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a b s t r a c t

A generalized polygon is an incidence structure that satisfies certain regularity axioms
and their incidence graphs are known as Moore graphs. For any fixed non-negative
integer values h and k, a L(h, k)-coloring is a vertex coloring in which the difference
between any pair of vertices at distance one is at least h and the any pair of vertices
at distance two has coloring numbers that differ by at least k. The L(h, k)-span is the
difference between the maximum and minimum color number. The goal of this problem
is to find the L(h, k)-coloring with the smallest span. We present three structures of
the generalized 2n-gons for n = 3 and n = 4 and use them to obtain bounds of the
L(h, k)-number of their incidence graphs.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction and definitions

Jacques Tits [25] introduced the generalized polygons as an incidence structure in 1959. Projective planes (generalized
riangles, n = 3) and generalized quadrangles (n = 4) are special examples of generalized n-gons. Several substructures
ave been studied in generalized n-gons such as ovals, ovoids, spreads, t-goods, daisies, [4,8,15,16,24] among others, as
hose are used in many interesting related problems. In this paper we describe a structure in generalized triangles and
wo structures in classical generalized quadrangles and use them to obtain an L(h, k)-coloring of their incidence graphs.

All graphs considered in this work are finite, simple and undirected. We follow the book of Bondy and Murty [7] for
erminology and notations not defined here. The distance between two vertices u and v is denoted by d(u, v). The diameter
s the maximum distance among any pair of vertices of the graph. The girth is the length of the shortest cycle of the graph.

Let P and L be disjoint non-empty sets, called the set of points and the set of lines, respectively, and let I be the
point-line incidence relation. Let I be the ordered triple I = (P,L, I), and let G = G[P,L] be the bipartite incidence
raph on P ∪ L with edges connecting the points from P to their incident lines in L. The ordered triple I is a symmetric
eneralized n-gon of order q if it satisfies the following regularity requirements.

P1: There exists an integer q ≥ 1 such that every line is incident to exactly q + 1 points and every point is incident to
exactly q + 1 lines.

P2: Any two distinct lines intersect in at most one point and there is at most one line through any two distinct points.
P3: The incidence graph G = G[P,L] has diameter n and girth 2n.
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Fig. 1. Examples of Hs,m and Hs,m,n .

The incidence graphs G = G[P,L] have been thoroughly studied, since they are q+1-regular graphs with girth 2n, and
re known as (q+ 1, 2n)-Moore cages, for more information on Moore cages and generalized polygons, see [12,21,22,26].
oore cages are interesting in many applications, for example see [1,2,5], so as an application of the structures studied
nd described below, we consider L(h, k)-colorings of the incidence graphs G = G[P,L].
The concept of L(h, k)-coloring was introduced by Griggs and Yeh [18,28], in the particular case where h = 2 and

k = 1, to solve problems related to the assignment frequencies or channels in a multihop radio network although it
was previously mentioned by Roberts [23] in his summary on T -colorings and by Wegner [27] in the special case h = 1
and k = 1 as a problem not related to frequency assignment. The idea behind L(h, k) colorings is that close locations
must receive channels that differ by a certain amount k, and very close locations must receive channels that differ by a
certain amount h where h ≥ k in order for the assignation to be efficient. An L(h, k)-coloring of a graph G is a function

: V (G) → {0, 1, . . .} such that vertices at distance exactly one have colors that differ by at least h and vertices at distance
xactly two have colors that differ by at least k. The span of an L(h, k)-coloring is the difference between the largest and
he smallest color used, the minimum span over all possible L(h, k) colorings of G is denoted by λh,k(G) and is called the
(h, k)-number of G. The L(h, k)-coloring has been used to model many problems, for fixed values of h and k, for example
ee [3,6] and several heuristics have been studied to solve this coloring problem, for example see [10,11,14,20]. The L(h, k)
umber has also been studied for some families of graphs for example cycles and paths [17], for more information on
(h, k) colorings see [9].
In this paper we present three structures of the generalized 2n-gons for n = 3 and n = 4 and use them to obtain bounds

of the L(h, k)-number of their incidence graphs. In Section 2, we present an structure that appears in the complement of
the incidence graph of projective planes and show bounds on λh,k of those graphs. In Section 3, we construct a structure
of points and a structure of lines, in classical generalized quadrangles, the daisy structure and the sunflower structure.
Moreover, we obtain bounds for the L(h, k)-number their incidence graphs in terms of these structures.

2. Projective planes

Let s and n be integers such that n ≥ 2 and 0 ≤ s ≤ n. Let Hs,n be the bipartite graph with partite sets
A = {a0, a1, . . . , an−1}, B = {b0, b1, . . . , bn−1} and edges {aibi+k | 0 ≤ k ≤ s, i+k ≤ n−1}∪{bjaj+k | 0 ≤ k ≤ s, j+k ≤ n−1}.
imilarly, let s, n and m be integers such that 0 ≤ s ≤ n ≤ m and 2 ≤ n. Let Hs,m,n be the bipartite graph such that if
< m, Hs,m,n = Hs,m − {bn, . . . , bm−1}, and if n = m, Hs,m,n = Hs,m. Some examples of these graphs appear in Fig. 1.

Throughout this paper we use the previous labeling to denote the vertices of Hs,m,n.
Let G1 = (X1, Y1) and G2 = (X2, Y2) be bipartite graphs such that |X1|, |X2| ≤ m and |Y1||Y2| ≤ n. A packing of G1 and

G2 into Km,n is a mapping X1 → {1, 2, . . . ,m}, X2 → {1, 2, . . . ,m}, and Y1 → {1, 2, . . . , n}, Y2 → {1, 2, . . . , n} such that
E(G1) ∩ E(G2) = ∅.

The following lemma gives conditions on the maximum degree of a G1 and G2 for the existence of a packing of G1 and
G2 into Km,n.

Lemma 2.1 ([19]). Let G1 = (X1, Y1) and G2 = (X2, Y2) be bipartite graphs such that |X1| = |X2| = m and |Y1| = |Y2| = n. If
2∆(G1)∆(G2) < 1 + max(m, n), then there is a packing of G1 and G2 into Km,n.

The bipartite complement G◦ of a bipartite graph G = (A, B) is the graph whose vertices are V (G) and uv ∈ E(G◦) if
u ∈ A, v ∈ B and uv /∈ E(G). Observe that every subgraph H of G◦ and every subgraph H ′ of G are a packing into Km,n with
|A| = m and |B| = n.

Theorem 2.1. Let q be a prime power and let G be a (q + 1, 6)-Moore graph. Then G◦ has a Hs,q2+q+1 for every s ≤
⌊ q−2

4

⌋
.

Proof. The (q+1, 6)-Moore graph is q+1 regular and the maximum degree of Hs,q2+q+1 is equal to 2s+1. By Lemma 2.1,
there is a packing of G and Hs,q2+q+1 into Kq2+q+1,q2+q+1 whenever 2∆(G)∆(Hs,q2+q+1) ≤ q2 + q + 1. Thus, if s ≤

⌊ q−2
4

⌋
,

then 2(q + 1)(2s + 1) < q2 + q and the result follows. ■
32



J. Fresán-Figueroa, D. González-Moreno and M. Olsen Discrete Applied Mathematics 331 (2023) 31–37

T

G

L
I

We use Theorem 2.1 to obtain results on λh,k of bipartite graphs, in particular, of (q + 1, 6)-Moore graphs. Recall, the
square of a graph G, denoted by G2, is the graph with the same vertex, in which two vertices in G2 are adjacent when
their distance in G is at most 2.

Remark 2.1. Let G = (A, B) be a connected bipartite graph of girth at least 6 and let G2 = G2
− E(G). Then

λh,k(G) ≥ k(ω(G2) − 1). In particular, if diam(G) = 3 then λh,k(G) ≥ k(max(|A|, |B|) − 1).

Proof. Let ω(G) denote the maximum order of a complete subgraph of G and let H be a complete subgraph of G2 of order
ω(G2). Since every pair of vertices in G2 is at distance 2 in G, the color of any pair of vertices in H must differ by at least
k. Thus, if diam(G) = 3 then V (H) = A or V (H) = B, and the result follows. ■

Theorem 2.2. Let G = (A, B) be a connected bipartite graph with partite sets A and B such that |A| = m and |B| = n, with
m ≥ n and girth at least 6. If G◦ contains H1,m,n as a subgraph and h ≤ 2k, then λh,k(G) ≤ k(m − 1).

Proof. For the upper bound we exhibit an L(h, k) coloring of G with k(m − 1) colors. By hypothesis, it follows that the
bipartite complement G◦ contains a spanning subgraph isomorphic to H1,m,n with the same bipartition as G. Following the
vertex labeling of H1,m,n over the vertices of G, let Γ be the coloring of V (G) such that Γ (ai) = Γ (bi) = ki. Let ai, aj ∈ A
such that dG(ai, aj) = 2, then |Γ (ai) − Γ (aj)| ≥ k|i − j| ≥ k. Analogously, if bi, bj ∈ B, |Γ (bi) − Γ (bj)| ≥ k. Let ai ∈ A and
bj ∈ B. If |Γ (ai) − Γ (bj)| < h ≤ 2k, then |i − j| ≤ 1. Hence, aibj ∈ E(H1,m,n) and since H1,m,n is a subgraph of G◦, ai and bj
are not adjacent in G. Thus, dG(ai, bj) ≥ 3, Γ is a L(h, k) coloring and λh,k(G) ≤ k(m − 1) and the result follows. ■

The next result is an immediate consequence of Theorem 2.2 and Remark 2.1.

Corollary 2.1. Let G = (A, B) be a connected bipartite graph with partite sets A and B such that |A| = m and |B| = n, with
m ≥ n, girth at least 6 and diam(G) = 3. If h ≤ 2k, then λh,k(G) = k(m − 1).

For instance, the incidence graphs of projective planes and the trees with diameter 3 are families of graphs that satisfy
the hypothesis of Corollary 2.1. In what follows, we assume that h > 2k.

We use the previous lemma to guarantee that Hs,m,n is a spanning subgraph of the bipartite complement of a bipartite
graph.

Theorem 2.3. Let G = (A, B) be a bipartite graph of girth at least 6 such that ∆ < (m+1)/(4
⌊ h

k

⌋
+2)where m = max(|A|, |B|).

hen λh,k(G) ≤ k(m − 1). Moreover, if diam(G) = 3, then λh,k(G) = k(m − 1).

Proof. Let s =
⌊ h

k

⌋
and let Hs,m,n be the bipartite graph described previously. Observe that ∆(Hs,m,n) = 2s + 1. By

Lemma 2.1 and since ∆ < (m+ 1)/(4
⌊ h

k

⌋
+ 2), it follows that 2(2s+ 1)(∆) < m+ 1. Therefore the bipartite complement

◦ contains a spanning subgraph isomorphic to Hs,m,n with the same bipartition as G.
Following the vertex labeling of Hs,m,n over the vertices of G, let Γ be the coloring of V (G) such that Γ (ai) = Γ (bi) = ki.

et ai, aj ∈ A, then |Γ (ai) − Γ (aj)| ≥ k|i − j| ≥ k. Analogously, if bi, bj ∈ B, then |Γ (bi) − Γ (bj)| ≥ k. Let ai ∈ A and bj ∈ B.
f |Γ (ai) − Γ (bj)| < h, then |i − j| ≤ s. Hence, aibj ∈ E(Hs,m,n) and since Hs,m,n is a subgraph of G◦, ai and bj are not
adjacent in G. Thus, dG(ai, bj) ≥ 3, Γ is a L(h, k) coloring and λh,k(G) ≤ k(m − 1). The result follows by the lower bound
given in Remark 2.1. ■

Since (q+1, 6)-Moore graphs are graphs with diameter 3 and girth 6, then we have the following Theorem that bounds
λh,k for every pair of h and k in terms of q or the greatest integer s such that Hs,q2+q+1 is a spanning subgraph of G◦.

Theorem 2.4. Let q be a prime power and let G be a (q + 1, 6)-Moore graph.

1. If h ≤ 2k, then λh,k(G) = k(q2 + q).
2. Let h > 2k and let s be the greatest integer such that Hs,q2+q+1 is a spanning subgraph of G◦.

(a) If
⌊ h

k

⌋
≤ s, then λh,k(G) = k(q2 + q).

(b) If
⌊ h

k

⌋
> s, then k(q2 + q) ≤ λh,k(G) ≤

⌊
q2+q

s

⌋
h +

(
q2 + q mod s

)
k.

Moreover, for q ≥ 7, λh,k(G) ≤ (4q + 25 +
116
q−5 )h. In particular, for q ≥ 121, λh,k(G) ≤ (4q + 26)h.

3. Let h > 2k.

(a) If q > 4
⌊ h

k

⌋
+ 2, then λh,k(G) = k(q2 + q).

(b) If q ≤ 4
⌊ h

k

⌋
+ 2, then k(q2 + q) ≤ λh,k(G) ≤

q2+q
2 h.
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1. Let h ≤ 2k. By Corollary 2.1, with n = m = q2 + q + 1, it follows that λh,k(G) = k(q2 + q).
2. Let h > 2k and let α = min{s,

⌊ h
k

⌋
}. For i ∈ {0, 1, . . . , q2+q}, by the division algorithm, there exist ci, di non-negative

integers such that i = ci(α)+di, with 0 ≤ di < α. Let Γ be the coloring of V (G) such that for Γ (pi) = Γ (li) = cih+dik.
Since α = min{s,

⌊ h
k

⌋
}, Hα,q2+q+1 is a spanning subgraph of G◦. Observe that if x, y ∈ P or x, y ∈ L, then d(x, y) = 2

and |Γ (x) − Γ (y)| ≥ h > k. Let x ∈ P and y ∈ L. If |Γ (x) − Γ (y)| < h, it follows that xy ∈ E(Hα,q2+q+1) and by
construction x and y are not adjacent in G. Hence, Γ is an L(h, k) coloring of G.
Observe that if

⌊ h
k

⌋
≤ s, then α =

⌊ h
k

⌋
, thus the set of colors used in Γ is

{0, k, 2k, . . . , (q2 + q)k}

and by Remark 2.1, λh,k(G) = k(q2 + q).
On the other hand, if

⌊ h
k

⌋
> s, then α = s, and the set of colors used in Γ is

{0, k, . . . , (s − 1)k, h, h + k, h + 2k, . . . , h + (s − 1)k, 2h, . . . ,
⌊
q2 + q

s

⌋
h +

(
q2 + q mod s

)
k}

and by Remark 2.1, the result follows.

In particular, by Theorem 2.1, λh,k(G) ≤

⌊
q2+q⌊
q−2
4

⌋⌋
h +

(
q2 + q mod

⌊ q−2
4

⌋)
k.

Let q ≥ 7, since
⌊ h

k

⌋
> s ≥

⌊ q−2
4

⌋
≥

q−5
4 , k < h⌊

q−2
4

⌋ and
(
q2 + q mod

⌊ q−2
4

⌋)
≤

⌊ q−2
4

⌋
− 1 =

⌊ q−6
4

⌋
, it follows

that λh,k(G) ≤ (4q + 25)h +
116
q−5h. Observe that this upper bound is quadratic on q, because h >

⌊ q−2
4

⌋
k.

3. Let h > 2k. If q > 4
⌊ h

k

⌋
+ 2, by Theorem 2.3, with ∆ = q + 1, m = q2 + q + 1, it follows that λh,k(G) = k(q2 + q).

In [19] it was proved, using Lemma 2.1, and analyzing small cases, that in every (q + 1, 6)-Moore graph G,
H1,q2+q+1 is a spanning subgraph of G◦. Thus, if q ≤ 4

⌊ h
k

⌋
+ 2, and since s ≥ 1, by item (2) and Remark 2.1,

k(q2 + q) ≤ λh,k(G) ≤
q2+q
2 h. ■

By Theorem 2.4, λ2k,k(G) = (q2 + q)k, which generalizes the following result presented in [19].

Theorem 2.5 ([19]). If G is the incident graph of PG(2, q) then

λ2,1(G) = q2 + q.

3. Classical quadrangles

We use the following coordinatization of the incidence graph of (classical) generalized quadrangles, Q(4, q), where
V0 = P and V1 = L.

Definition 3.1 ([2]). Let Fq be a finite field with q ≥ 2 a prime power and ρ a symbol not belonging to Fq. Let G
be the incidence graph of a generalized quadrangle of order q. Let (V0, V1) be the bipartition of G with Vi = F3

q ∪

{(ρ, b, c)i, (ρ, ρ, c)i : b, c ∈ Fq} ∪ {(ρ, ρ, ρ)i}, i ∈ {0, 1} and edge set defined as follows:
For all a ∈ Fq ∪ {ρ} and for all b, c ∈ Fq :

NG((a, b, c)1) =

{
{(w, aw + b, a2w + 2ab + c)0 : w ∈ Fq} ∪ {(ρ, a, c)0} if a ∈ Fq;

{(c, b, w)0 : w ∈ Fq} ∪ {(ρ, ρ, c)0} if a = ρ.
NG((ρ, ρ, c)1) = {(ρ, c, w)0 : w ∈ Fq} ∪ {(ρ, ρ, ρ)0}
NG((ρ, ρ, ρ)1) = {(ρ, ρ,w)0 : w ∈ Fq} ∪ {(ρ, ρ, ρ)0}.
Or equivalently, for all i ∈ Fq ∪ {ρ} and for all j, k ∈ Fq :

NG((i, j, k)0) =

{
{(w, j − wi, w2i − 2wj + k)1 : w ∈ Fq} ∪ {(ρ, j, i)1} if i ∈ Fq;

{(j, w, k)1 : w ∈ Fq} ∪ {(ρ, ρ, j)1} if i = ρ.
NG((ρ, ρ, k)0) = {(ρ, w, k)1 : w ∈ Fq} ∪ {(ρ, ρ, ρ)1};
NG((ρ, ρ, ρ)0) = {(ρ, ρ,w)1 : w ∈ Fq} ∪ {(ρ, ρ, ρ)1}.

Recall that this graph is named (q + 1, 8)-Moore graph, exists when q is a prime power, has order 2(q + 1)(q2 + 1),
is (q + 1)-regular, has diameter 4 and girth 8. An ovoid O of G is a subset of P of cardinality q2 + 1, such that every
pair of vertices in O is at distance four. For more information on Moore graphs or generalized quadrangles, see [12,22]
respectively.

In [4] Araujo-Pardo described a special structure, the Daisy structure, for desarguesian projective planes. We define a
similar daisy structure in the generalized quadrangle Q(4, q) using the coordinatization 3.1. Let G be a (q + 1, 8)-Moore
graph with partition (P,L). For k ∈ Fq, let Ok = {(ρ, ρ, ρ)0}∪{(i, j, k)0 | i, j ∈ Fq} be a subset of P; let O′

k = Ok\{(ρ, ρ, ρ)0}
and let Tr = N((ρ, ρ, r)1) \ {(ρ, ρ, ρ)0} for r ∈ Fq ∪ {ρ}. The daisy’s center is the point (ρ, ρ, ρ)0, the daisy’s petals are the
sets O′

k and the daisy’s stems are the sets Tr .
The following lemma states that the daisy structure is a partition of the points of the quadrangle.
34
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Fig. 2. At left appears the general sketch of the daisy structure of a classical generalized quadrangle. At right appears a particular example: a drawing
of GQ (2, 2) as a daisy.

emma 3.1. Let G be a (q + 1, 8)-Moore graph with bipartition (P,L). The sets Ok are ovoids of G. Furthermore, the set
= {O0,O′

1,O
′

2, . . . ,O
′

q−1, Tρ, T0, T1, . . . , Tq−1} is a partition of P .

Proof. We use the coordinatization in Definition 3.1 to prove that the set Ok is an ovoid in G. Let x, y ∈ Ok be two
distinct vertices. Since x, y ∈ P , the distance between them is even. We prove that d(x, y) = 4. By Definition 3.1,
d((ρ, ρ, ρ)0, (i, j, k)0) = 4. Suppose, by contradiction, that there exist x, y ∈ Ok such that d(x, y) = 2. Let x = (i, j, k)0,
let y = (i′, j′, k)0 and let L = (a, b, c)1 be the unique vertex adjacent to x and y. Then, by Definition 3.1,

(i, j, k)0 = (i, ai + b, a2i + 2ab + c)0 and (i′, j′, k)0 = (i′, ai′ + b, a2i′ + 2ab + c)0

Since a2i + 2ab + c = k = a2i′ + 2ab + c , it follows that i = i′, j = ai + b = ai′ + b = j′ and x = y, a contradiction. Hence,
every pair of vertices in Ok is at distance 4.

Observe that by construction, Ok ∩Oℓ = (ρ, ρ,ρ)0. Since there are no 4-cycles in G, and the distance between (ρ, ρ, ρ)0
and v is 2 for every vertex v ∈ Tr , r ∈ Fq ∪ {ρ}, it follows that Tr ∩ Ts = ∅. Hence, the intersection between any pair of
sets in D is empty and their union is P . Thus the result follows. ■

Observe that this partition, as can be seen of Fig. 2, consists in q ovoids (the petals) intersecting in one point (the
center) and the lines that pass through the center (the stems).

Let q ≥ 5 be a prime number. For the lines of the generalized quadrangle Q(4, q) we define a special structure,
the Sunflower structure, using the coordinatization 3.1. Let G be a (q + 1, 8)-Moore graph with partition (P,L). For
ℓ ∈ {0, 2, . . . , q − 3} and t ∈ Zq+1 with q = ρ we define the sets

Sℓ,t = {(t, i, i − ℓ)1 | i ∈ Zq} ∪ {(t + 1, j, j − ℓ − 1)1 | j ∈ Zq, j ̸= 2−1
},

the set S∗

ℓ,t = Sℓ,t ∪ {(ρ, ρ, t − 1)1}, and the set R with

Rt = {(t, i, i + 1)1 | i ∈ Zq} ∪ {(t + 1, 2−1, 2−1
− ℓ − 1)1 | ℓ ∈ {0, 2, . . . , q − 3}}.

The sunflower’s center is the set of lines C = {(ρ, ρ, ρ)1} ∪ {(ρ, ρ, i)1 | i ∈ Zq}, the sunflower’s petals are the sets Sℓ,t and
the sunflower’s stems are the sets Rt .

Lemma 3.2. Let G be a (q+1, 8)-Moore graph with bipartition (P,L). For a fixed ℓ, every pair of vertices in S∗

ℓ,t is at distance
4 in G. Similarly, every pair of vertices in Rt is at distance 4 in G. Furthermore, the set S = {S0,0, S0,1, . . . , S0,q, S2,0, S2,1, . . . ,
S2,q, . . . , Sq−3,q, R0, R1, . . . , Rq, C} is a partition of L

Proof. Let i, j ∈ Zq and w ∈ Zq+1 with q = ρ. We use the coordinatization in Definition 3.1 to prove that for fixed ℓ

and t , every pair of distinct vertices x, y ∈ Sℓ,t is at distance 4. Since x, y ∈ L, d(x, y) is even. We prove that d(x, y) = 4.
Suppose, by contradiction, that d(x, y) = 2. We have the following three cases:

Case 1. If x = (t, i, i − ℓ)1 and y = (t, i′, i′ − ℓ)1, then N(x) ∩ N(y) ̸= ∅. Let z ∈ N(x) ∩ N(y). By Definition 3.1,
z = (w, tw + i, t2w + 2it + i− ℓ)0 and z = (w′, tw′

+ i, t2w′
+ 2i′t + i′ − ℓ)0. Then w = w′, and since tw + i = tw + i′, it

follows that i = i′ and x = y, a contradiction.
Case 2. The case when x = (t + 1, j, j − ℓ − 1)1 and y = (t + 1, j′, j′ − ℓ − 1)1 is analogous to Case 1.
Case 3. If x = (t, i, i−ℓ)1 and y = (t+1, j, j−ℓ−1)1. Let z ∈ N(x)∩N(y). By Definition 3.1, z = (w, tw+i, t2w+2ti+i−ℓ)0

and z = (w′, (t + 1)w′
+ j, (t + 1)2w′

+ 2(t + 1)j + j − ℓ − 1)0. Then w = w′, and since tw + i = (t + 1)w + j, it follows
that i = w + j. Then t2w + 2ti + i − ℓ = (t + 1)2w + 2(t + 1)j + j − ℓ − 1, if we replace i = w + j it follows that j = 2−1.
Thus if j ̸= 2−1, then d(x, y) = 4 for every pair x, y ∈ Sℓ,t .

By Definition 3.1, if x ∈ S , then d((ρ, ρ, t − 1) , x) = 4, and the result follows.
ℓ,t 0
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Now we prove that for fixed t , every pair of distinct vertices x, y ∈ Rt is at distance 4. Since x, y ∈ L, d(x, y) is even. We
prove that d(x, y) = 4. Suppose, by contradiction, that d(x, y) = 2. We have the following three cases: If x = (t, i, i + 1)1
and y = (t, i′, i′ + 1)1, the case is analogous to Case 1 for the sets Sℓ,t .

If x = (t+1, 2−1, 2−1
−ℓ−1)1 and y = (t+1, 2−1, 2−1

−ℓ′
−1)1, the result follows by considering the third coordinates

x and y.
If x = (t, i, i+1)1 and y = (t+1, 2−1, 2−1

−ℓ−1)1, let z ∈ N(x)∩N(y). By Definition 3.1, z = (w, tw+i, t2w+2ti+i+1)0
nd z = (w′, (t + 1)w′

+ 2−1, (t + 1)2w′
+ 2(t + 1)2−1

+ 2−1
− ℓ − 1)0. Then w = w′, and since tw + i = (t + 1)w + 2−1,

t follows that i = w + 2−1. Then t2w + 2ti + i + 1 = (t + 1)2w + 2(t + 1)2−1
+ 2−1

− ℓ − 1, if we replace i = w + 2−1 it
follows that ℓ = −1. That is ℓ = q − 1, which is a contradiction since ℓ ∈ {0, 2, . . . , q − 3}. Thus d(x, y) = 4.

By construction, any pair of sets in S are mutually disjoint. So it suffices to prove that the cardinality of the union of
the sets in S equals q3 + q2 + q+ 1. Observe that |C| = q+ 1, |Sℓ,t | = 2q− 1 and |Rt | = q+ ( q−1

2 ), and the result follows.
■

Using the daisy structure and the sunflower structure we prove the following theorem.

Theorem 3.1. Let q ≥ 5 be a prime number and let G be a (q + 1, 8)-Moore graph then,

(2q + 2)k ≤ λh,k(G) ≤
(q + 1)2

2
k + h

Proof. Let G be a (q+1)-Moore graph with vertex partition (P,L). For the upper bond we define the coloring Γ in terms
f the daisy and the sun flower structure.

Γ (v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if v ∈ O0;

ik if v ∈ O′

i;

(q + w)k if v = (ρ, r, w)0 ∈ Tr ;
(2q − 1 + t)k + h if v ∈ Rt;

(3q + 1 + t)k + h if v ∈ S∗

0,t;

((3 +
ℓ
2 )q + 1 +

ℓ
2 + t)k + h if v ∈ Sℓ,t;

By Lemmas 3.1 and 3.2 the coloring Γ restricted to the points or restricted to the lines is a L(h, k)-coloring. Since
the points are colored with colors from the set {0, k, . . . , (2q − 1)k} and the lines are colored with colors from the set
{(2q − 1)k + h, (2q)k + h, . . . , (3q + 1 +

q−1
2 (q + 1))k + h} the colors of adjacent vertices are at distance at least h.

Hence, Γ uses (q+1)2
2 k + h colors and the upper bound follows.

For the lower bound, assume for contradiction, that there exists an Lh,k coloring Γ that uses at most (2q+2)k−1 colors.
et Aj = {jk, jk + 1, . . . , (j + 1)k − 1} for 0 ≤ j ≤ 2q + 1 be a partition of the numbers used in Γ . Observe that Γ −1(Aj) is
set of vertices which are pairwise at distance 3 or 4. In the proof of Theorem 3.2 of [13] the authors proved that every
ubset of vertices of a (q+ 1, 8)-Moore graph which contains vertices at distance 3 or 4 pairwise contains at most q2 + 1
ertices. By the pigeonhole principle, there exists a r such that Ar contains at least q2 +2 vertices, a contradiction. Hence,
must use at least (2q + 2)k colors and the result follows. ■

We believe the study of these structures can help to obtain bounds on other distance-based graph parameters on the
ncidence graphs of projective planes and classical quadrangles.
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