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Abstract

The acyclic disconnection E?(D) of a digraph D is the maximum possible num-
ber of (weakly) connected components of a digraph obtained from D by deleting
an acyclic set of arcs. In this paper we provide new lower and upper bounds in
terms of properties such as the degree, the directed girth and the existence of
certain subdigraphs and bounds for bipartite digraphs, p-cycles and some circu-
lant digraphs. Finally, as a consequence of our bounds we prove the Conjecture
of Caccetta and Haggkvist for a particular class of digraphs.
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1 Introduction

In 1999, Neumann-Lara [15] defined the acyclic disconnection of a digraph as a mesure
of the complexity of the cyclic structure. The acyclic disconnection ﬁ(D) of a digraph
D is the maximum possible number of (weakly) connected components of a digraph
obtained from D by deleting an acyclic set of arcs. Equivalently, the acyclic dis-
connection can be defined in terms of vertex colorings, cycle transversals or certain
subdigraphs [9, 15], in particular, as the maximum number of colors in a vertex col-
oring of D not producing proper directed cycles that is a cycle where every pair of
adjacent vertices have different colors.



In [8] it was proved that the problem of determining & (D) of an arbitrary digraph
D is NP-complete. The acyclic disconnection of a digraph has been studied in different
classes of tournaments [9, 10, 12-15], and it has been related to other invariants such

as the maximum order of an acyclic subset of vertices, F(D), or the number of vertices
of the digraph D [15], the dichromatic number (introduced by Neumann-Lara in 1982)
[14, 15], the Feedback Arc Set [8] and the girth [1].

Let i1,i9,...,iq € Z,\{0}. A circulant digraph Bn(il, i2,...,14) has vertex set the
elements of Zy, and (a, b) is an arc if and only if b = a+1i; for some i; € {i1,%2,...,14},
where the sum is taken in 7Z,,.

We use the book [2] for terminology and definitions not given here. Lower bounds
on the acyclic disconnection in terms of 5 (D) were established in [1]. In particular
the following theorem was stated.

Theorem 1. [I] Every digraph D with girth g > 4 that contains a subdigraph
isomorphic to an acyclic tournament of order k has ﬁ(D) >k+g—3.

In this paper we give new bounds on the acyclic disconnection of digraphs. We
present lower bounds in terms of the existence of certain subdigraphs and lower bounds
for the p-cycles and certain kinds of circulant digraphs. We present upper bounds in
terms of the order, the degree and the directed girth and upper bounds for r-regular
bipartite digraphs, p-cycles. Finally, as a consequence of our bounds, we prove the
Conjecture of Caccetta and Haggkvist for a particular class of digraphs.

2 Bounds on acyclic disconnection

Let T's denote the set of colors {¢1,ca,...,cs}. Let D be a digraph and ¢ : V(D) — T’
a vertex coloring of D. The color ¢, is a singular class of ¢ if there is u € V(D) such
that p(u) = cq and @(v) # cq for every v € V(D) \ {u}. We say that a subdigraph
H of D is proper colored if o(u) # ¢(v) for any two vertices u,v € V(H) such
that wv € A(D). So, a proper (colored) cycle is a cycle such that any two adjacent
vertices u,v on the cycle have different color. The set of external arcs of a coloring
¢ : V(D) — T’y is the arc set {uv € A(D) : p(u) # ©(v)}. The heterochromatic digraph
H, (D) is the spanning subdigraph of D with arc set {uv € A(D) : p(u) # @(v)} [9].
Observe that a vertex coloring ¢ is externally acyclic if H,(D) is an acyclic digraph.

As we mention in the Introduction Neumann-Lara [15], defined the acyclic dis-
connection U)(D) of a digraph D, as the maximum possible number of connected
components of a digraph obtained from D by deleting an acyclic set of arcs. Equiv-
alently, the acyclic disconnection E?(D) can be defined as the maximum number of
colors in a vertex coloring of D not producing proper (directed) cycles. Our objective
in this section is to establish upper bounds on this parameter.

Let D be a digraph and F' a subdigraph of D. A vertex v € V(F) is interior in F'
if NT(v) CV(F)or N~ (v) C V(F). The set of interior vertices of F' is denoted by
IT(F)or I~ (F), respectively. For € € {—,+} let [¢(F) = {v € V(F): N(v) C V(F)}.
Lemma 1. Let D be a digraph and R a subset of vertices such that D[R] is an
acyclic subdigraph. If every vertex b € V(D) \ R is an interior vertex of D — R, then
W(D) > |R| +1.



Proof. Let R = {x1,22,...,2|g|}. Let ¢ be a coloring such that ¢(v) =i if v = x;,
1 =1,2,...,|R|, and p(v) = |R|+ 1 if v € R. Let v be a cycle of D. Clearly, there
exists v € V() \ R and by the hypothesis v € I~ (D — R)UIT (D — R). Suppose that
v € I~ (D — R), then 7 has the arc v'v with v' € V(D — R), thus « has two adjacent
vertices of the same color. We reason analogously if v € IT(D — R). Therefore ¢ is an
external acyclic coloring and o (D) > |R| + 1. O

Theorem 2.(i) Let D = C,(1,2,...,k) be a circulant digraph. Then W (D) = 1 if
n < 2k; and (D) >n—2k+1ifn>2k+1.
(ii) Let D = Cs,(1,3,...,2k — 1) be a circulant digraph. Then & (D) > 2n — 2k — 1 if
2n > 4k.

Proof. Let ¢ be an external acyclic coloring.

(1) When n < 2k and n odd this circulant digraph contains a symmetric hamil-
tonian cycle, thus every vertex must have the same color. And if n even then all the
diagonals {i,7 + k} of this circulant digraph are symmetric. Since ¢ is an external
acyclic coloring both vertices of {0,k} must have the same color, say 1, and both
vertices of {i,7 + k}, i < k, have color ro. If r1 # ro, then the cycle (0,4,k,i + k,0)
has not two adjacent vertices with the same color which is a contradiction. Therefore
ﬁ(D) = 1if n < 2k. Next, suppose that n > 2k + 1. Let R = {0,1,...,n — 2k — 1}.
Clearly D[R] is acyclic. Let i with n — 2k < i < n—k—1. Then every j € N*(i) satis-
fies that j <mn —1, hence N* (i) C D — R or equivalently i € I (D — R). Analogously,
ifn—k <i<mn-—1, then every j € N (i) satisfies that j > n — 2k, and therefore
i€ I(D— R). By Lemma 1, it follows that & (D) > |R| = n — 2k + 1, and item (i)
is proved.

(i) Let R = {0,1,...,2n — 2k — 1}. Clearly D[R] is acyclic and reasoning as in
item (¢) we obtain the desired result. |

Lemma 2. Let D be a digraph of order n with U)(D) > 2. Every external acyclic
coloring of V(D) has at least two chromatic classes C' and C' such that |I¢(C)| > 1
and |T(C")| > 6(D) + 1 — [I(C)| for € € {+,~}.

Proof. Let ¢ be an external acyclic coloring of D which has at least two colors because
ﬁ(D) > 2. Let H, be the corresponding acyclic subdigraph. Then there exists a vertex
v in H, such that d;}w (v) = 0. Let C be the chromatic class of ¢ such that v € V(C),
then [I7(C)| > 1. If there is a chromatic class C” different from C' such that I (C”) #
(), then the lemma holds. Therefore, we suppose I (C’) = () for all C’ different from
C. Let D' = H, — I'*(C) and consider u € V(D') with df,(u) = 0. Then u € V(C'),
for some C’ # C and Nt (u) C IT(C)UV(C'). Then |V(C")| > 6T (D) +1— [ITT(C)|.
Analogously, for |[V(C")| > §= (D) +1—|I~(C)|, we use that there exists a vertex v
in Hy such that dj;_(v) = 0. O

Shen proved the following result.
Theorem 3. [19] Every digraph D of order n and 6+ (D) > (3 —/T)n (or 6~ (D) >
(3 —\/T)n) contains a directed triangle.
Lemma 3. Let D be a digraph with d = max{6™,6~} and let F, F' be two subdigraphs
such that F C F' and for every u € V(F), it follows that w € IT(F') if d = 6t or
uelI (F') ifd=05". Then



/

(i) [V(F")| > |V(F)| +d— |A(F)|/|V(F)| where A(F) is the set of arcs of F.
(it) [V(F)| > d+ (VT =2)|V(F)|, if g > 4.
(i) |V(F")| > min{2d, |V (F)| + d}, if D is bipartite.

Proof. Assume that d =57

(i) Notice that there exists vg € V(F) such that dj(vo) < |A(F)|/|V (F)|, yielding
that df_(vo) > 0% — |A(F)|/|V(F)| because u € I*(F') for all u € V(F). Thus,
[V(F")| > |[V(F)|+ 6T —|A(F)|/|V(F)| and item (z) holds.

(74) As a consequence of Theorem 3 it follows that if g > 4, there exists vo € V(F)
such that dj(vo) < (3—V7)|V(F)|. Thus, df, _x(vo) > 6+ — (3 —V/7)|V(F)|, yielding
that |V (EF")| > |[V(F)| + 6%t — (3 = VT)|V(F)| = 6t + (/7T — 2)|V(F)| and item (ii)
holds.

(i41) Let U, W be a bipartition of the vertices of D. If V(F) C U (or V(F) C W),
then |V(F')| > |V(F)| + 6T, and the result clearly holds. Otherwise, there are u €
V(F)NU and w € V(F)NW, |[V(F’)| > 2§%. Thus, item (73¢) also holds. O

Theorem 4. Let D be a digraph of order n, girth g and with d = max{d*,5~}. Then
the acyclic disconnection

(i) &(D)<n—d.

(ii) (D) <n—(3d—1)/2ifg> 3.
(iii) (D) <n+1—(T-1)dif g> 4.
(iv) W(D) <n—2d+1if D is bipartite.

Proof. Assume that d = 7.

If every external acyclic coloring ¢ of D has a unique chromatic class, then E?(D) =
1 and since d = max{dt,5}, it follows that (D) = 1 < n—d. Then we can consider
an external acyclic coloring having U)(D) > 2 chromatic classes. Thus we can apply
Lemma 2 yielding that there exists a chromatic class C such that [IT(C)| > 1 or
equivalently |V (C)| > 6 +1. Since there are at most n— |V (C)|+1 chromatic classes,
we obtain

WD) <14+n—|V(C) <n—dF
and item (¢) holds.

(i) Since the girth g > 3, W(D) > 2. Therefore we can apply Lemma 2 yielding
that there exists a chromatic class C such that |I1(C)| > 1. By Lemma 3, with F’ = C
and F' the induced subdigraph by I1(C), and taking into account that |A(F)| <
[V(F)|(JV(F)| — 1)/2 because the girth g > 3, it follows that

[HO) =1 _ g, IHO)+1

V(C)] 2 1TH(C)] + 6% - E=5 5

(1)

If [I*(C)| > 6, then

30T +1 30T —1
2 "

WMD) <14+n—|V(O)| <1+n-— B



and the result holds. Then we assume |1 (C)| < 6% — 1. From Lemma 2 and from (1)
it follows that there exists C' # C, such that |V (C")| > 6T —|IT(C)|+1. Then we have

. [IT(C)+1

VOI+IVIE)] =6 +o0T = [T (O)] +1

2
+ _
_ st AL
35+
> — .
> = +2

Since there are at most n — (|V(C)| + |V(C")|) + 2 chromatic classes, therefore

BD) <24 n— (VO + V() <n- B <n L

Hence item (ii) holds.
(#41) Suppose that the girth ¢ > 4. By Lemma 3 (i), with F/ = C and F the
induced subdigraph by IT(C), it follows that

V(C)| = 6% + (VT =2)lI(C). (2)
If [IT(C)| > 6% we have [V(C)| > (V7 — 1)0*. Then W(D) < 1+n — |V(C)| <
14+n— (\/7 —1)6" and the result holds. Hence, we continue the proof assuming that
|IT(C)| < 6. By Lemma 2, and by (2) we have

VO +[V(C)] = (07 + (VT =2IIH(O)]) + (6 = [TF(C)| +1)

>
— 2% — (3 — VT)|IH(C)| +1
> (V7T-1)0t 4+ 1.

Therefore,

FD) <240 = (VO +[V(C@)) <n— (VT -1)5" +1.

Hence item (#4¢) holds.
(iv) Suppose that D is bipartite. By Lemma 3 (i), it follows that

[V(C)| > min{26,6% + [IT(C)|}. (3)

Hence if [IT(C)| > 0%, then |[V(C)| > 267 yielding that &(D) < 1+n — |[V(C)| <
1+ n — 25% and the result holds. Hence, by (3) we continue the proof assuming that

IIT(C)] <6t —1and |[V(O)] > 6T +[IT(C)).
By Lemma 2, we have

[V(O) + V(O] = (6T +[IT(O))+ (67 = |IT(C)| +1) =251 + 1.



It follows that
WD) <n+2— (V)| +|V(C)]) <n—2"+1.

Hence the theorem holds. O

Remark 1. The upper bound on w(D) given in Theorem 4 is tight at least for 6t =

1,2, because for a directed cycle U)(Bn) =n—1.
An immediate consequence of Theorem 2 and Theorem 4 we can write the following
corollary.

Corollary 1. For alln > 4, Bn(l, 2) =n — 3. See Figure 1 forn=1.

Fig. 1 C7(1,2)

A bipartite tournament is an oriented complete bipartite graph. Theorem 4 allows
us to establish the following result for bipartite tournaments.
Corollary 2. If T is an r-regular bipartite tournament of order 4r, then E?(D) <
2r 4+ 1.

The above result is also obtained in [9]. Moreover, this upper bound was shown to
be tight for 84 [K ] also known as a complete p-cycle for p = 4.

A generalized p-cycle is a digraph D such that its set of vertices can be partitioned
in p parts,

V(D) = UnezVa,

in such a way that the vertices in the partite set V,,, are only adjacent to vertices in
Vat1, where the sum is in Z,,. If D is strongly connected, N (V,) = Va41. Observe that
bipartite digraphs are generalized p-cycles with p = 2. Gémez, Padré and Perennes
showed in [11] that a digraph is a generalized p-cycle if and only if for any pair of
vertices u, v, the lengths of all paths from u to v are congruent modulo p. Hence, the
girth of a p-cycle is at least p. Clearly, when p > 3 the transitive tournament contained
in a p-cycle is an arc. As a consequence of Theorem 1 and Theorem 4 we obtain the
following result.
Corollary 3. Let D be a p-cycle with p > 3 of order n and d = max{é™,5"}.
Therefore
n—2d+1 if p even
n—(3d—1)/2 if p odd.

In the next result we improve the lower bound of the above corollary.

The number of weak components of a digraph D (i.e. the number of connected
components of its underlying graph) is denoted by w(D).

p-1=@0) <



Proposition 5. Let D be a p-cycle of order n, p > 3 and partite sets Vi, Va,..., V.
Then

(D) = n —min{|V;| + [Vit1| = w(DV; U Viua))}-
Moreover if D[V; UViy1] is weakly connected, then & (D) > n—min{|Vi|+ |Vig1|} +1,
and the equality is obtained when the p-cycle is complete.

Proof. Consider two consecutive partite sets V; and V;1;. Clearly, D — (V; U V1)
is acyclic and every vertex b € V; U V;4; is an interior vertex of D[V; U Vij44]. If
w(D[V; UVi41]) = k, then we can color each vertex of D — (V; UV, 1) with a different
color and the vertices each component of D[V; U V;;;] with the same color. Thus,
T(D) = n— (|Vil + [Vigr]) + k. Hence, W(D) > n — min{|V;| + |[Vis1| — w(D[V; U
Viga])}. If D is a complete p-cycle, then D[V; UV;,1] is weakly connected and & (D) >
n — min{|V;| + |Vit1|} + 1. Moreover, every external acyclic coloring must have two
consecutive partite sets colored with the same color because the p-cycle is complete.
Hence, & (D) < n —min{|Vi| 4+ [Vis1|} + 1 and the result follows. O

As a consequence of Theorem 1, and using Theorem 4, the following corollary is
direct.
Corollary 4. Let D be a digraph on n vertices, girth g > 4, minimum out-degree

5T > 1 that contains a subdigraph isomorphic to an acyclic tournament of order k.
Then

(i) g < &(D)—k+3.
(i) g<n—k+4—(V/7T-1)5".
(i) g <n— 20" +4 —k if D is bipartite.

A (d, g)-digraph is a d-regular digraph with girth g. Behzand, Chartrand and Wall
[3] asked for the minimum order n(d,g) of any (d,g)-digraph. A (d, g)-digraph of

order n(d, g) is called (d, g)-dicage. Clearly a circulant digraph 8n(1, 2,...,d), where
n = (g—1)d+1,is a (d,g)-digraph. Using this digraph, in [3] it was proved that
n(d,g) < (9—1)d+1, and they proposed the conjecture n(d,g) = d(g—1)+ 1, that is,
the order of a (d, g)-cage is at least d(g — 1) + 1. Caccetta and Haggkvist [7] proposed
a generalization of this conjecture requiring merely a lower bound on the out-degrees
of the digraph G.

Conjecture 1. [7] Let D be a digraph on n vertices in which each vertex is of out-
degree at least d > 1. Then the girth of D is at most n/d.

Both conjectures have been proved to be true for d = 2 by Behzad [4], for d = 3
first by Bermond and later by Hamidoune [5, 18], for d = 4 and for vertex-transitive
digraphs by Hamidoune [16, 17].

Now we prove Conjecture 1 in certain families of digraphs.

Corollary 5. Let D be a digraph on n vertices, girth g > 4, minimum out-degree
0T > 1 that contains a subdigraph isomorphic to an acyclic tournament of order k.
Then g < 5% if
(6t —1)n
5+
Proof. Tt is a direct consequence of Corollary 4. O

k> — (VT —1)6% + 4.
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