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Abstract: The identifying code problem for a given graph involves finding a minimum subset of
vertices such that each vertex of the graph is uniquely specified by its nonempty neighborhood within
the identifying code. The combinatorial optimization problem has a wide variety of applications in
location and detection schemes. Finding an identifying code of minimum possible size is a difficult
task. In fact, it has been proven to be computationally intractable (NP-complete). Therefore, the use
of heuristics to provide good approximations in a reasonable amount of time is justified. In this work,
we present a new population-based local search algorithm for finding identifying codes of minimum
cost. Computational experiments show that the proposed approach was found to be more effective
than other state-of-the-art algorithms at generating high-quality solutions in different types of graphs
with varying numbers of vertices.

Keywords: identifying code; combinatorial optimization; population-based search; local search;
configuration checking

MSC: 68W50; 05C90

1. Introduction

An identifying code is a dominating subset of vertices in a graph such that the closed
neighborhood of any vertex has a distinct intersection with the identifying code. The
fundamental idea is to uniquely identify an element in a system by its neighbors. The goal
of the identifying code problem is to find a code of minimum cardinality for any given
graph. Identifying codes can be applied to a wide variety of applications such as fault
detection and location detection [1,2]. The definition of identifying codes was motivated
by the need to solve fault diagnosis problems in multiprocessor systems [1]. The main
objective of fault diagnosis is to test a system and locate faulty nodes. The aim is to choose
the smallest subset of processors, known as a code, to perform fault diagnostics at the
lowest possible cost. A processor in the code is called a codeword. A codeword tests itself
and all the processors it is connected to. If a codeword detects a fault, it sends an alarm
signal. Once some alarms are activated, the exact location of the fault can be determined.

The term identifying codes was first coined by Karpovsky et al. in [1], where they
described the conceptual foundations and provided results and lower bounds for graphs
with specific topologies, such as binary cubes, non-binary cubes, and trees. Since this
prominent paper, the theoretical and practical aspects of identifying codes have attracted
the attention of many scholars during the last few decades.

From a theoretical perspective, researchers have studied the identifying code for many
classes of graphs. For instance, Charon et al. [3] studied the identifying codes of different
types of infinite graphs, such as square and triangular lattices. They also showed that
the problem complexity in several types of graphs is NP-hard. Some classes that have
been extensively studied include trees [4], paths [5], cycles, [5-7], hypercubes [8,9], and
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grids [10]. For additional references on the theoretical aspect of identifying codes and other
related problems, we refer the reader to D. Jean’s web page [11].

From a practical viewpoint, the identifying code problem has numerous applications
in real-world domains, such as fault diagnosis of multiprocessor systems [1], compact
routing in networks [12], emergency sensor networks in facilities [2], and the analysis
of secondary RNA structures [13]. Due to its wide applicability, some researchers have
focused on designing algorithms and techniques to solve the problem computationally.

Laifenfeld et al. studied covering problems using identifying codes in [14]. Approxi-
mation algorithms for computing identifying codes for certain types of graphs are given
in [15,16]. In the context of emergency sensor networks, there have been several attempts to
apply identifying codes for target identification [17]. In particular, Ray et al. [2] proposed a
greedy algorithm called ID-CODE to construct irreducible identifying codes. It should be
emphasized that their algorithm converges to a local minimum, which is not necessarily
close to the global minimum. In [18], Xiao et al. formulated the problem using an integer
program and developed a genetic algorithm to solve it. Recently, Horan et al. [19] com-
pared three approaches for finding minimum identifying codes on Brujin graphs using
quantum annealing.

The identifying code problem is proven to be NP-complete, even when restricted
to the case of bipartite graphs [20]. This means that there is no known polynomial-time
algorithm to solve the problem, so the use of heuristics is justified to obtain quality solutions
in a reasonable time frame. To the best of our knowledge, the use of population-based
approaches on the identifying code problem from a graph theory perspective is limited in
the literature. This paper presents our work in this direction.

This study proposes a new population-based local search method (PB-LS) for solving
the identifying code problem. While existing techniques offer viable solutions, they often
struggle to balance exploration and exploitation, especially for large problem instances. Our
main contribution is a local search strategy based on configuration checking that addresses
these limitations by improving the quality of solutions. Our goal is to contribute to ongoing
efforts to find higher-quality solutions for the identifying code problem.

The experimental results demonstrate that the proposed algorithm outperforms other
state-of-the-art methods in several test instances, suggesting that combining population-
based heuristics with a local search is a promising approach for solving the identifying
code problem.

The rest of the manuscript is organized as follows. Section 2 provides some necessary
notation and definitions. Section 3 introduces the proposed algorithm and details its
components. Section 4 presents the computational experiments and discussion. In Section 5,
conclusions and paths for future investigation are drawn.

2. Preliminaries

A graph G consists of a pair of sets (V(G), E(G)), where V(G) is the vertex set of G
and E(G) is the edge set of G. Specifically, E(G) is a set of unordered pairs of vertices
of V(G). If u,v € V(G), an edge between u and v is denoted by uv. As we mentioned
previously, the physical location of the components in many mathematical and real-life
problems can be modeled using graphs. For example, given a multiprocessor system, we
associate it with a graph G in the following way: the vertices of G are the processors and the
edges represent the links between them. If there is just one fault at the time, an identifying
code can be used to determine the exact location of the fault once a certain number of
alarms are activated.

Let G be a graph and let v be a vertex of G. The neighborhood N(v) of v is the set of
all vertices adjacent (directly connected) to v and the closed neighborhood N|[v] of v is the
set N(v) U {v}. That is, the closed neighborhood includes both the neighbor vertices of
v and v itself. Some definitions are described as follows.
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Definition 1. Given a graph G, a subset C of V(G) is called a separating code if for each pair of
distinct vertices u,v of G, we have N[u| N C # Nv| N C. (An example is shown in Figure 1).

NN

Figure 1. An example of a separating code on the graph. The black vertices are the members of the
separating code.

Definition 2. Given a gmph G, a subset C of V(G) is called dominating if for every vertex
v € V(G), we have C N N[v] # @. (An example is shown in Figure 2).

NN,

Figure 2. An example of a dominating set on the graph. The black vertices are the members of the
dominating set.

Definition 3. Given a graph G, a subset C of V(G) is called an identifying code if C is both a
separating code and a dominating code of G. (An example is shown in Figure 3).

N

Figure 3. An example of an identifying code on the graph. The black vertices are the codewords.

To illustrate the meaning of the identifying code, we use the graph in Figure 3, which
represents a simplified multiprocessor system. To diagnose faulty processors, specific
software routines are executed on a select group of processors. Suppose that these spe-
cial processors are located at the vertices C = {v1,v3,v5,v6}. It can be verified that the
intersection between this group and the close neighborhood of each processor is unique:
Nlo1] N C = {oy,05},N[oo] N C = {02}, N[oz] N C = {ovy,02,06}, Noa] N C = {1},
Nvs]| N C = {v1,v5,06}, N[vg] N C = {vs,v6}. Therefore, the vertex set C allows for
the unique identification of a faulty processor and is an identifying code.
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The aforementioned relationships can be expressed conveniently in matrix notation. If
Gisagraph with V(G) = {uy,uy, ..., u,}, the adjacency matrix of G is the n x n (0,1)-matrix
A(G) = [a;j], where

0] = {1 if wju; € E(G), )

0 if Miu]‘ % E(G)

The closed adjacency matrix is the matrix A 4 I, where I is the n X n-identity matrix.
Let S be a subset of V(G). We can associate a vector (s1, 5, ...,5,) with S such thats; = 1,
ifs; € Sands; =0, if s; ¢ S. The closed neighborhood of a vertex u; of G is the ith row of
the closed adjacency matrix, that is

Nlu;] = (ap, ai, - - -, Ajn)- 2)

Let G be a graph of order n and vertex set V(G) = {uy,uy, ..., u, }. Let C be a subset of
vertices of G with |C| = k. Let M = [m;;] be a k x n matrix with entries from {0, 1} such that
1 ifu; € Nlu;|NnC,
[myj] = ! 1 3)

0 1ful-§ZN[u]-]ﬂC.

In other words, M is a matrix obtained from the closed adjacency matrix of G by
deleting the rows corresponding to the vertices not in C. Observe that C is an identifying
code of G if M satisfies the following conditions:

(i) all the columns of M contain at leasta 1,
(ii) all the columns of M are distinct.

Condition (i) states that N[u] N C # @ for all v € V(G), and condition (ii) states that
N[u]NC # N[v]NC, forevery u,v € V(G). To clarify the expression of an identifying code
using the matrix point of view, consider as an example the graph G depicted in Figure 3.
The vertex set C = {v1,v2, 05,06} is an identifying code of G. We present the adjacency
closed matrix A and the matrix M obtained by considering the row corresponding to
vertices of C. Note that M satisfies conditions (i) and (ii).

101110
011000 101110
111101 011000

A= 1 0110 O’Mi 100 0 1 1| @
1 00 011 001011
0 01 011

Therefore, the problem of finding a minimum identifying code is equivalent to that of
finding a (0, 1)-matrix M of n columns and the minimum number of rows satisfying the
previous conditions; the rows of this matrix are an identifying code of the graph.

An Integer Formulation for the Identifying Code Problem

The minimum identifying code problem in graphs can be modeled by an integer
program formulation [21]. Let G be a graph of order n and let A = [a;j] be the closed
adjacency matrix of G, as defined in Section 2. Our vertex subset C is defined as a vector
(c1,¢2,..,cn)T with¢; = 1,if ¢; € Cand ¢; = 0, if ¢;  C. Then, C is an identifying code of
G if and only if the following conditions hold:

n
Yo law —apl o > 1, ®)
k=1

A-C>1T (6)

Inequality (5) implies that in order for C to be a separating code, the condition must be
fulfilled for all pairs of vertices v; and v;, where i # jand i,j € {1,2,...,n}. Inequality (6)
is required for the dominating property to be satisfied. Inequalities in (5) and (6) can
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be grouped in a matrix U = [ui]-}mxn, where m = (n* — n)/2. We can then define the
augmented matrix,

u
I~ = |—]. 7
c= 4] @)

Observe that I; consolidates both the separating and dominating constraints of the
problem; we call I; the identifying matrix of G. Thus, the integer programming model is
given by the following:

min 1C
st. Ig-C>1T 8)
c;e{0,1},ie{1,2,...,n}

The formulation described in (8) has all binary variables, and the goal is to find the
minimum-size code. Although the identifying code problem differs from set covering in
terms of the type of constraints, some of the ideas from set covering can be adapted to solve
it. The integer programming model has n? + 11/2 rows constraints, which can be numerous
even for small graphs. For example, in a graph with 100 vertices, the number of constraints
is approximately 5000. This makes it challenging to solve large-scale instances of the mini-
mum identifying code problem. For this reason, the development of efficient algorithms to
solve the problem is an important research topic, and new algorithms are needed.

3. Proposed Population-Based Local Search

In this section, we focus on the proposed approach for solving the identifying code
problem. Population-based algorithms are general-purpose optimization methods that
have been successfully applied to a wide range of combinatorial optimization problems [22].
Generally, population-based heuristics are strong at exploring the search space but weak
at exploiting the solutions they find. Therefore, in this work, we employ a local search
mechanism to augment the intensification ability. The flowchart of the proposed algorithm

is shown in Figure 4.

Initialize parameters
[
Create Initial Population
I
Calculate fitness value
1]
Selection
!
Apply local search
!

Repair mechanism

Termination
criteria met?

Yes

Figure 4. Flowchart of the proposed algorithm.
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In the following subsections, we describe the solution representation, fitness function,
initial population creation, selection, and repair mechanism of the proposed algorithm. The
repair mechanism was inspired on the work by Xu et al. [18], but we have made some
modifications to improve its performance. We also describe the local search procedure in
detail and the update population strategy.

3.1. Solution Representation and Fitness Function

A solution is represented as a binary array of length equal to the number of vertices in
the instance that needs to be solved. Specifically, a value of 1 in the /th element of the array
indicates that vertex [ is in the solution; a value of 0 indicates that it is not. An example is
shown in Figure 5. Here, we can see that vertices 1, 3 and 4 belong to the solution, while
vertices 2 and 5 do not.

Vl V2 V3 V4 V5 Vn—l Vn
Solution 1 0 1 1 0O | ----- 0 1
(. J
Y
Vertex

Figure 5. Solution encoding scheme.

The fitness function used to evaluate the population is identical to our optimization
objective. That is, the fitness of a vector solution C = (cy, ¢, ..., cy) is calculated by the
following equation:

n
fitness =) _ ¢; )
i=1

In other words, the smaller the size of the code, the better the fithess of a solution.
One challenge of using binary representation is that operators can produce infeasible
solutions (i.e., solutions that violate one or more constraints). Several mechanisms exist
for handling infeasible solutions such as penalty functions and repair mechanisms [23].
Penalty functions penalize the fitnesses of infeasible solutions without distorting the fitness
landscape. Repair mechanisms, on the other hand, seek to design specific operators to
transform infeasible solutions into feasible ones. We chose the repair mechanism approach
due to its good results in the literature [18] and because it can be difficult to determine an
effective penalty function [24,25]. More details about the repair mechanism can be found in
Section 3.5.

3.2. Population Initialization

The algorithm begins by creating a set of feasible solutions to form the initial popu-
lation. To ensure that the initial population is diverse and spread out across the solution
space, a random initialization method is used. The pseudocode for creating an initial
solution is detailed in Algorithm 1.

At first, every vertex in the solution is established as a codeword (Line 1). It is known
that a set that includes all vertices of a graph is an identifying code [2]. Once all vertices are
set, to generate a uniformly distributed population over the search space, each vertex has a
0.5 probability of being removed (Lines 2—4). If removing the vertex results in an identifying
code, we proceed to the next vertex. Otherwise, the removed vertex is reinserted into the
solution, and we proceed to consider another vertex (Lines 5-9).

After this step, the feasible solution may still contain non-essential or redundant
vertices. A vertex is considered redundant if it can be deleted from the solution and still be
an identifying code. Consequently, some unnecessary vertices are eliminated randomly
(Lines 10-17). It is worth noting that not all redundant vertices are removed. This initial
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redundancy in the solutions can provide more possibilities in the search process. This
procedure is repeated N times until the initial population is fully populated.

Algorithm 1 Initial_Solution()

1: Generate C .=V

2: for all vertex v in C do

3 if rand() < 0.5 then

4 C:=C\{v};

5: if C is not an identifying code after removal then
6 CS:=CSU{v};

7 end if

8 end if

9: end for

10: t:= [C|

11: whilet > 0 do

12: v := Randomly select a vertex from the first vertices of C;
13: if v is not essential then

14: C:=C\{v};

15: t:=t—1;

16: end if

17: end while
18: return C;

3.3. Selection

The selection process determines which solution is chosen for being improved by the
local search mechanism. The main idea is that the better a solution, the higher its likelihood
of being selected. There are several selection mechanisms, but tournament selection is
probably the most popular strategy due to its simplicity and efficiency [26].

This method involves randomly selecting n individuals from a population P; then,
the selected individuals compete against each other. If n = 2, the process is called a
binary tournament selection. In our algorithm, a binary tournament selection has yielded
effective outcomes.

3.4. Developed Local Search Algorithm

In large and complex search spaces, population-based algorithms have been seen as
search techniques that can find high-performance regions. However, they are not ideal for
fine-tuning solutions [27]. This paper presents a local search method based on the concept
of configuration checking to intelligently add and remove vertices from the solution. Local
search methods show great performance on seeking good solutions by exploring the
neighborhood structure. In the following subsections, we discuss the score function, the
configuration checking mechanism, and the main local search procedure.

3.4.1. Scoring Function

To calculate the score value, denoted as sc(v), we consider the frequency of all the
rows in Ig, referring to the idea in [28]. Let R(Ig) = {r1,72,...,7m} be the set that contains
all the row vectors of I and let g(r) be an attribute for each r;, i € {1,2,..., m} denotating
the frequency of the ith row. For a row r of the constraints, if I(r,v) = 1, we say that
“row r is covered by vertex v”.

At the beginning, each row r is assigned a frequency of 1. After each iteration, the
frequency of any row r that is not covered by the vertices in the candidate solution, CS, is
increased by 1. This encourages the algorithm to find vertices that fulfill the dominating
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and separating code constraints for those uncovered rows in the next iterations. Based on
this idea, we propose the following scoring function:
- , if Cs,
SC('U) —_ Z?‘ECl q(r) 1 (S (10)
Lec,q(r), ifo ¢ CS.

where Cj is the set of rows which will become uncovered if vertex v is removed from CS,
while C; is a set of rows whose current status is uncovered and will be covered by adding
v to CS. Regardless of whether we are removing or inserting vertices, we prefer one with
the highest sc(v) value.

3.4.2. Configuration Checking Strategy

Configuration checking (CC) is a diversification strategy that was introduced in [29]
to reduce the cycling problem in local search. The intuition behind CC is that by reduc-
ing cycles on local structures of the candidate solution, we may also reduce cycles on
the whole candidate solution. CC has been shown to be effective in reducing cycling in
local search for combinatorial optimization problems such as combinatorial interaction
testing [30], minimum weighted vertex cover [31-33], constraint satisfaction problems
such as satisfiability [34-36], maximum satisfiability [37], and a minimum weighted clique
problem [38]. However, to the best of our knowledge, the configuration checking mecha-
nism has not been adapted to the identifying code problem.

The CC strategy depends on the configuration concept. For each vertex, v, its configu-
ration denotes the states of all the vertex in its neighborhood, N(v). If the configuration of
v has not changed since the last time it was removed from the candidate solution, CS, then
it is not allowed to be added back to CS. To implement the CC strategy, a boolean array
named conf is generally employed, if con f[v] = 1, then v is authorized to be added to CS;
otherwise, conf[v] = 0 and v is forbidden to be added to CS.

In this work, we used the improved CC strategy, ES-CC, proposed by Wang et al. [28]
to update the conf array after each iteration. As opposed to the traditional CC strategy,
ES-CC considers the element or row states in addition to the neighboring states. A set
Rehange that includes all the rows of the I that change its state to respect to v (i.e., rows that
were covered by v and are now uncovered after v is removed) must be defined. Also, the
set P, which contains all the rows of the I covered by v should be specified.

For the identifying code problem, the strategy can be adapted as follows. In the
beginning, the value of conf[v] is initialized as 1 for each vertex v € (G). Afterwards, if
a vertex v has changed its state (i.e., being added or removed from CS), then the value
of conflv] is assigned to 0. For each vertex u € N(v), if Repange N Py # @, then conflu] is
assigned to 1.

Considering the score function and the CC strategy, the following rules to remove and
add vertices can be defined.

*  Removing rule: Choose a vertex v with the highest sc(v) value and update the config-
uration to reflect this change.

¢ Adding rule: Randomly select an uncovered row r and choose a vertex v that covers
it. Vertex v should be allowed to be added to the solution with conf[v] = 1 and the
highest sc(v) value. Ties are broken randomly. Update the configuration to reflect
this change.

3.4.3. Local Search Main Procedure

The pseudocode of the local search is shown in Algorithm 2. The procedure receives
as input a candidate solution, CS, and the maximum number of local search iterations,
max_iter. At the beginning, some variables are initialized: iter, tabu, q(r) for all rows, while
conf and sc(v) values are set for all vertices (Line 1). Also, the best solution found so far
CS* is established as CS (Line 2).
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Algorithm 2 Local Search Procedure (CS,max_iter)

1: Initialize iter, tabu, q(r) for all rows, conf(v) and sc(v) for all vertices;
2. CS* :=CS;
3: while iter < max_iter do

4 if all rows in I are covered then
5: if CS < CS* then
6: CS* :=CS;
7: iter = 0;
8: end if
9: v := a vertex selected based on Removal Rule;
10: CS:=CS\ {v}
11: end if
12: v := a vertex selected based on Removal Rule and v ¢ tabu;

13: tabu == @

14: CS:=CS\{v};

15: v := a vertex selected based on Adding Rule;
16:  CS:=CSU{v};

17: tabu := tabu U {v};

18: end while

19: return CS*;

While the maximum number of iterations is not reached, the solution is improved
(Lines 13-18). If the algorithm arrives at a CS in which all vertices form an identifying code,
then we update the best known solution CS* and reduce the size of CS (Lines 5-10). We define
that CS < CS* if for the associated vectors CS = (c1,¢3,...,¢,) and CS* = (cj,¢3,...,C}),
it follows that } I ; ¢; < ¥/, ¢j. To remove a vertex, the algorithm decides based on the
highest sc(v) value and prevents the vertex that has been added in the previous step from
being removed with a tabu list (Lines 12-14). A new vertex is chosen by means of Adding Rule

(Lines 15-16). Finally, the incumbent solution CS* is returned (Line 19).

3.5. Repair Mechanism

Because infeasible solutions can occur during the search process, the following repair
mechanism is applied. This procedure consists of two main steps. First, we verify that
all dominating and separating constraints are fulfilled. If some constraints are missing,
this means that some rows of the I; matrix are uncovered. A row of matrix I is said to
be uncovered if there is no vertex that is included in the solution that satisfies the row
constraint. We proceed to compute the set of these uncovered rows. Then, we consider
these rows one at a time in their natural order. With probability of 0.5, we select a vertex that
covers the row in consideration and covers the greatest number of remaining uncovered
rows. Otherwise, we randomly select a vertex from all the vertices that cover the row.

Our approach differs from previous ones for identifying codes, such as the one pro-
posed in [18]. Previous approaches used a greedy policy to select the vertex that covers
the row in consideration. Our approach combines a greedy policy that considers the mini-
mum cost-to-benefit ratio with a restricted criterion of randomness. In our experience, this
flexibility promotes higher-quality solutions.

After the first phase, there may be some redundant vertices in the solution. In order to
obtain an irreducible code, as stated in [2], we define a procedure to delete them. A vertex
is considered redundant if it can be deleted from the solution and still be an identifying
code. Therefore, we iterate over the solution sequentially and seek for possible removals by
flipping set bits and verifying if the solution is still feasible.

3.6. Update Population Strategy

An adequate population update strategy is essential to maintain diversity and explore
promising areas of the search space. After applying the proposed local search and repair
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mechanism, a retention policy should be used. This policy outlines whether a solution is
good enough to join the population, and if so, which existing solution should be replaced.

In nature, the fittest members in a population are more likely to survive. This is known
as the elite retention strategy [26]. Inspired by this strategy, we retain the top elements in
the population following a steady-state model. Let |Pop| be the population size. During
the search process, the population constantly maintains the top |Pop| optimal solutions.
After each iteration, if the fitness of the new solution found by local search is higher than
the fitness of the worst solution, the new solution replaces the inferior one. To increase
diversity, if the fitness of the new solution is equal to the fitness of the worst solution, the
new solution replaces the worst solution at random. One advantage of this model is that
the newly generated solution is immediately available for selection. In our experiments,
we found that the strategy was able to improve convergence.

4. Computational Experiments

This section presents the results of the experiments conducted to evaluate the proposed
algorithm on a variety of graphs. We compare our algorithm with other state-of-the-art
heuristics and an integer programming approach.

4.1. Test Instances

The computational experiments were carried out using different types of lattice graphs,
namely square, triangular, and hexagonal grids. In previous studies, grids have been used
to test algorithms for solving the identifying code problem. These studies have shown
that grids can have complex landscapes for metaheuristics [18]. Also, the properties of
lattices are well described in the literature, and they depict some essential components of
real-world networks, such as roads [39]. We also explored the use of hypercube graphs
due to their suitability as a network topology for communications [40]. To illustrate the
different types of graphs employed in this paper, Figure 6 depicts some small graphs and
their minimum identifying codes.

(a) (b)

Figure 6. Cont.
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Figure 6. Identifying codes for different types of graphs: (a) 3 x 3 hexagonal grid. (b) 3 hypercube.
() 5 x 5square grid. (d) 5 x 5 triangular grid. The black vertices are the codewords.

4.2. Data Preprocessing

The computational complexity of solving the identifying code problem depends pri-
marily on the number of rows and columns in the I;. To reduce the dimension of the
test instances, we implemented some of the reduction procedures outlined by Beasley [41].
Specifically, there are two basic steps: eliminating redundant rows (constraints) and elimi-
nating columns (vertices) that are subsets of other columns.

Table 1 presents the details of the reduced instances for each type of graph. Input data
for these well-known graph families can be generated using open-source frameworks such
as Octave (https://octave.org) and SageMath (https:/ /www.sagemath.org). In our work,
we used SageMath to generate the adjacency matrices of the graphs of interest, which we
then exported to text files that could be read by our C++ program. The type of graph, its
dimensions, and the name of the instance are specified in columns 1, 2, and 3, respectively.
The information related to the vertices is reported in columns 4-7, while the information
regarding constraints is reported in columns 8-10. It is worth noting that increasing the
size of the grids and hypercubes significantly increases the search space for each instance.

Table 1. Test instances information.

Vertices Constraints
Graph Dimension Name
Total Removed Core Total Removed Core
5x5 H1 70 0 70 2485 2202 283
Hexagonal 10 x 10 H2 240 0 240 28,929 27,787 1133
15 x 15 H3 510 0 510 130,305 127,772 2533
20 x 20 H4 880 0 880 387,640 383,157 4483
5 Q1 32 0 32 528 2080 272
Hypercube 6 Q2 64 0 64 2080 1344 736
7 Q3 128 0 128 8256 6336 1920
8 Q4 256 0 256 32,896 28,032 4864
5x5 S1 25 0 25 325 206 119
10 x 10 S2 100 0 100 5050 4456 594
Square 15 x 15 S3 225 0 225 25,425 24,006 1419
20 x 20 S4 400 0 400 80,200 77,606 2594
25 x 25 S5 625 0 625 195,625 191,506 4119
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Table 1. Cont.

Vertices Constraints
Graph Dimension Name

Total Removed Core Total Removed Core

5x5 T1 21 0 21 231 173 58

10 x 10 T2 66 0 66 2211 1952 259

Triangular 15 x 15 T3 136 0 136 9316 8665 651
20 x 20 T4 231 0 231 26,796 25,570 1226

25 x 25 T5 351 0 351 61,776 59,800 1976

As can be observed, this method does not allow us to remove any vertex from the
solution a priori. In our experiments, all algorithms only consider the essential constraints,
or rows, in the core. It is worth noting that working on this reduced scheme is equivalent to
working on the original one. In our experience, this preprocessing step does not significantly
impact the quality of the solutions, but it reduces the overall running time of the algorithm.

4.3. Experimental Settings

The proposed approach is compared to several state-of-the-art metaheuristics: the
genetic algorithm for the identifying code problem by Xu et al. [18] (GA), artificial bee
colony (ABC), firefly algorithm (FFA), and cat swarm optimization (CSO). These algorithms
have shown great performance in a wide variety of discrete problems. In the remainder of
this paper, the following acronyms will be used to identify each algorithm: GA, ABC, FFA,
CSO, and PB-LS (for the population-based local search algorithm described in Section 3).
We also used the commercial software Lingo 19.0 to solve the integer program and compare
the results to those obtained with the metaheuristics.

The techniques were coded in the C++ language and deployed on a desktop computer
with a Pentium i7 (3.4 GHz) processor, 32 GB of RAM, and Microsoft Windows 10 operating
system. The algorithms were compiled using MinGW 8.0.

Regarding the operating parameter settings, there are two main parameters that need
to be tuned: the population size N and max_iter, which controls the maximum number
of iterations in the local search stage. The parameters were tuned using a brute force
approach, as described in [42]. These parameter values provide good results, although
they may not be optimal for all instances. To ensure a fair comparison with the standard
algorithms, all parameter values are consistent, and the same parameters that appear in
different algorithms have the same values. The remaining parameters for GA, ABC, FFA,
and CSO were obtained from [18,43-45], respectively. The parameters for the proposed
algorithm are shown in Table 2.

Table 2. Parameters of the proposed algorithm.

Parameter Description Value
N Population size 100
max_iter Local search iterations 150

To ensure an impartial comparison of the internals of each metaheuristic, the initial-
ization procedure from Section 3.2 was used for all algorithms. To handle constraints, the
repair mechanism as described in Section 3.5 was applied uniformly across all techniques.

4.4. Experiments

Following previous works on identifying codes [18] and other related graph and set
problems, we used a time limit as the stopping criterion for all algorithms. The cutoff time
was set to 900 s (15 min) for all instances and all algorithms. To address the stochastic
nature of heuristic techniques, 30 independent runs were performed for each algorithm.
Additionally, the same seeds were used for all algorithms to ensure that all techniques
started with the same initial solutions. Because the Lingo solver consistently produces
the same result across different executions, we only recorded the minimum value found.
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Tables 3-6 show the detailed results obtained by different instances of our proposed PB-LS.
The algorithms are compared in terms of their minimum solution values (min), average
solution values (avg) over 30 executions, and relative percentage deviation (RPD), which
are given by the following:

min — best

RPD = —— x1 11
best x 100, (1)

where best is the top solution obtained from all runs and algorithms for each instance. The
best results per table row and instance are indicated in bold font.

Table 3 shows the results from the hexagonal lattice graphs. Our algorithm outper-
formed all others in three out of four instances, both in terms of the minimum and average
solutions found. Only in instance H1 did GA, ABC, FFA, CSO, and Lingo find the best
solution. ABC was the second-best competitor in terms of average solution. Instances H3
and H4 are among the most complex due to their dimensions, and PB-LS was able to find
the best solutions for these instances.

Table 4 summarizes the results obtained from the hypercube test instances. Our algo-
rithm achieved the best results on two out of four instances. It is worth noting that instances
Q1 and Q2 have the fewest number of vertices and constraints among all the test instances.

Table 5 shows the results obtained from the grid graphs. Our algorithm had a good
performance, achieving four out of five of the best solutions. GA, ABC, FFA, CSO and
Lingo had similar results in terms of the minimum solution found.

Table 6 shows the results obtained from the triangular lattice test instances. Here,
PB-LS was able to find three out of five of the best solutions. It is worth noting that both
GA and FFA struggled with this type of graph, as reflected by their high RPD values.

Previous experiments and discussions have shown that the PB-LS algorithm for the
identifying code problem outperforms competing algorithms, especially on large graphs.

Table 3. Computational experiments on hexagonal lattice test instances.

Instance H1 H2 H3 H4
Best 32 110 236 416
Our approach
Min 32 110 236 416
PB-LS Avg 32 110.4 237.5 418.6
RPD 0 0 0 0
Other approaches
Min 32 115 247 433
GA Avg 32.7 115.8 248.1 433.7
RPD 0 4.5 4.6 4
Min 32 112 243 425
ABC Avg 32 112.5 243.8 426.6
RPD 0 1.8 29 2.16
Min 32 116 249 434
FFA Avg 32.7 116.2 249.6 434
RPD 0 5.4 5.5 4.32
Min 32 111 248 433
CsO Avg 322 113.8 248.9 435.5
RPD 0 0.9 51 4.01
Min 32 114 251 432
Lingo Avg - - - -

RPD 0 3.6 6.4 3.8
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Table 4. Computational experiments on hypercube test instances.
Instance Q1 Q2 Q3 Q4
Best 10 19 34 63
Our approach
Min 10 19 34 63
PB-LS Avg 10 19 34 63.5
RPD 0 0 0 0
Other approaches
Min 10 19 35 67
GA Avg 10 19 36.1 67.8
RPD 0 0 2.9 6.3
Min 10 19 35 66
ABC Avg 10 19 35 66.4
RPD 0 0 2.9 4.7
Min 10 19 35 66
FFA Avg 10 19 35 66.5
RPD 0 0 2.9 47
Min 10 19 35 67
CSO Avg 10 19 35.8 68.3
RPD 0 0 2.9 6.3
Min 10 19 35 65
Lingo Avg - - - -
RPD 0 0 29 32
Table 5. Computational experiments on square lattice test instances.
Instance S1 S2 S3 S4 S5
Best 10 39 87 158 246
Our approach
Min 10 39 87 158 246
PB-LS Avg 10 39.6 88.4 158.5 247.8
RPD 0 0 0 0 0
Other approaches
Min 10 40 90 164 260
GA Avg 10 40.7 92.5 166 260.7
RPD 0 2.6 3.4 3.8 5.7
Min 10 40 89 160 255
ABC Avg 10 40 89.8 161.7 256.3
RPD 0 2.5 22 1.2 3.6
Min 10 40 92 166 258
FFA Avg 10 40.9 92.7 166.5 259.8
RPD 0 2.5 5.7 5.1 4.8
Min 10 40 90 164 259
CSO Avg 10 40.6 90.7 164.4 260.2
RPD 0 25 3.4 3.7 52
Min 10 40 90 160 250
Lingo Avg - - - - -
RPD 0 2.5 34 1.2 1.6




Mathematics 2023, 11, 4361 150f 17
Table 6. Computational experiments on triangular lattice test instances.
Instance T1 T2 T3 T4 T5
Best 9 23 46 76 116
Our approach

Min 9 23 46 76 116

PB-LS Avg 9 23 46.7 78.1 116.3

RPD 0 0 0 0 0
Other approaches

Min 9 23 48 82 124

GA Avg 9 23.8 489 82.4 126.3
RPD 0 0 43 6.5 6.9
Min 9 23 47 78 121

ABC Avg 9 23 47.2 78.8 121.6
RPD 0 0 2.2 2.6 43
Min 9 23 49 84 127
FFA Avg 9 23.7 49 84 127
RPD 0 0 6.5 10.5 9.4
Min 9 23 47 78 120

CSO Avg 9 24.2 48.2 80.7 123.2
RPD 0 0 2.2 2.6 3.4
Min 9 23 47 80 120

Lingo Avg - - - -

RPD 0 0 22 53 3.4

5. Conclusions

Identifying codes are a concept borrowed from graph theory that can be used to solve
problems such as fault detection and location detection. The computational complexity of
the problem is NP-complete, making it challenging to find high-quality solutions using
traditional techniques. In this scenario, heuristics are a viable alternative that can find good
solutions in a reasonable amount of time.

In this paper, we propose a new population-based local search algorithm (PB-LS)
to find an identifying code with minimum cost. Our PB-LS incorporates a local search
mechanism with the concept of configuration checking to avoid cycles and achieve high-
quality solutions.

The effectiveness of the proposed technique was evaluated using four different graph
families with different vertex sizes. We compared the algorithm to other state-of-the-art
metaheuristics, including GA, ABC, FFA, and CSO, in terms of minimum and average
code size. We also used the commercial software Lingo to solve the integer program. The
experimental results showed that the proposed algorithm was superior to other algorithms
on most instances. However, the PB-LS is considered a strong alternative for finding
minimum identifying codes.

There are several potential directions for future research. In particular, we believe
that exploring advanced constraint handling methods such as adaptive penalty functions
can improve solution quality. We are also interested in combining other population-based
techniques and local search methods to create more effective algorithms for solving the
identifying code problem. Additionally, we plan to explore the use of metaheuristics
in conjunction with other approaches, such as mathematical programming, constraint
programming, or machine learning. Finally, we plan to adapt the proposed strategy to
solve other interesting problems. We believe that some of the ideas devised in this work
can be generalized and applied to solve other known NP-hard problems in graph theory.
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