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Abstract

For integers r ≥ 2, g ≥ 3 and χ ≥ 2, an (r, g, χ)-graph is an r-regular graph with girth
g and chromatic number χ. Such a graph of minimum order is called an (r, g, χ)-cage.
Here we prove the existence of (r, g, χ)-graphs for all r and even g when χ = 2 and for all
r and g when χ = 3. Furthermore, using both existence proofs and explicit constructions
we give examples of (r, g, χ)-graphs for infinitely many values of r, g, χ.

Keywords: Graphs, cages, girth, chromatic number

Math. Subj. Class.: 05C10, 05C15

1 Introduction
In this paper, we consider only simple and finite graphs. We explore a generalization of
the Cage Problem. An (r, g)-graph is an r-regular graph with girth g. An (r, g)-cage is
an (r, g)-graph with the minimum possible number of vertices among all (r, g)-graphs, and
the order of an (r, g)-cage is denoted by n(r, g). The Cage Problem involves finding (r, g)-
cages, and it is well-known that (r, g)-cages have been determined only for very limited
sets of parameter pairs (r, g). Moore’s lower bound n0(r, g), as outlined by Moore (see
[7]), is a simple lower bound for n(r, g). Cages that achieve this bound are referred to as
Moore cages. Many generalizations of this concept have been studied; for example, bir-
regular cages, bipartite birregular cages, mixed cages, Cayley cages and vertex transitive
cages.

Here, we focus on a generalization proposed by Araujo, Berikkyzy and Lesniak in [1].
The authors introduced the notions of (r, g, χ)-graphs and (r, g, χ)-cages. For integers
r ≥ 2, g ≥ 3 and χ ≥ 2, an (r, g, χ)-graph is an r-regular graph with girth g and chro-
matic number χ, and an (r, g, χ)-cage is such a graph of minimum order. We use n(r, g, χ)
to denote the order an (r, g, χ)-cage. Extending the values of r, g, χ, for which (r, g, χ)-
graphs and cages are known to exist will be our primary goal here. We will also bound the
values of n(r, g, χ) in some cases.

Previous papers considered any 2 of the parameters r, g, χ. For example, the classic
definition of (r, g)-graph is an r-regular graph with girth g. We will denote such a graph as
an (r, g,−)-graph. Similarly, in [12] the author defines an (r;χ)-graph to be an r-regular
graph with chromatic number χ. We will denote such a graph as an (r,−, χ)-graph.
Finally, Erdös [9] considered graphs with a given chromatic number χ > 2 and girth greater
than g ≥ 3. Adding a disjoint cycle of length g to such a graph gives us a graph with girth
g and chromatic number χ, which we call a (−, g, χ)-graph.

In [1], the authors proved the existence of (r, g, χ)-cages for any r ≥ 2 , girth g ≥ 3
and χ = 3. Also, they characterized the (r, 3, 3)-cages for any r ≥ 2. Finally, they studied
balanced (r, g, χ)-graphs, that is (r, g, χ)-graphs for which there is a χ-coloring where the
color classes differ by at most 1.

E-mail addresses: garaujo@im.unam.mx (Gabriela Araujo-Pardo), julio -dc@ciencias.unam.mx (Julio
César Dı́az-Calderón), jfresan@cua.uam.mx (Julián Fresán), dgonzalez@cua.uam.mx (Diego
González-Moreno), linda.lesniak@wmich.edu (Linda Lesniak), olsen@cua.uam.mx (Mika Olsen)
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It is important to note that in [1] the authors assumed the Folklore conjecture (see
also [11]) which states that, for even values of girth g, all (r, g)-cages are bipartite or
equivalently that they have chromatic number equal to 2, to prove the existence of (r, g, 3)-
cages for any r and any g. In this paper we prove, constructively, the existence of (r, g, 2)-
cages for all r ≥ 2 and even girth g ≥ 4. Consequently, the existence of (r, g, χ)-cages for
any r ≥ 2, and girth g ≥ 3 and χ = 3 given in [1] follows immediately.

The authors of [1] did not explore the existence of (r, g, χ)-graphs for 4 ≤ χ ≤ r + 1.
In this paper we also illustrate the existence/construction of (r, g, χ)-graphs for infinitely
many values of r, g, χ.

2 The existence of (r, g, χ)-graphs for given g and χ and infinitely
many r.

It is well known that for any positive integer k, there exists a triangle-free k-chromatic
graph (see [4] for a proof of this result given by Mycielski also in [10]). In fact, the graphs
constructed in this proof have girth equal to 4. Moreover, one of the nicest applications of
the probabilistic method on graph theory was given by Erdös in 1959 (see [9]). He proved
that, given integers g ≥ 3 and χ ≥ 2 there exists a graph with girth g and chromatic number
χ.

In addition to this result, to prove the main theorem of this section, we need to define the
following family of trees. Let g ≥ 3 and r ≥ 3 be integers. We define the semi-complete
Moore tree T r

g as the tree obtained from the complete r-ary tree with height g by removing
two branches from the rooted vertex (see Figure 1). Observe that

|V (T r
g )| = 1 + (r − 2) +

g−1∑
i=1

(r − 2)(r − 1)i,

which is a multiple of r − 1.
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Figure 1: The semi Moore tree T 4
3 .

Theorem 2.1. Let g ≥ 3 and χ ≥ 2 be integers. Then there is an integer r∗ such that for
every r > r∗ there exists a (r, g, χ)-graph.

Proof. Let F be a graph with girth g, chromatic number χ and the the minimum possible
order, and let |V (F )| = n1. Let ∆(F ) = r∗ ≥ 2 and let r ∈ Z, such that r > r∗.
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Define the set S as the collection of all graphs of order

n = (r − 1)n1 + 2(r − 1) +

g−1∑
i=1

(r − 2)(r − 1)i +

g∑
i=1

(r − 2)(r − 1)i,

with girth g, maximum degree r, chromatic number χ that satisfy the following property:
if x is a vertex of a graph G ∈ S such that d(x) = r, then there is an edge e incident with
x such that χ(G− e) = χ and g(G− e) = g.

We first show that S ̸= ∅. Let H be the graph constructed by considering the union
of r − 1 copies of F and the semi Moore trees T r

g and a T r
g+1. Note that |V (H)| =

(r − 1)|V (F )| + |V (T r
g ) + |V (T r

g+1)| = n. If x ∈ V (H) and d(x) = r, then x ∈
V (T r

g )∪V (T r
g+1), and if e is an edge incident with x, then χ(G−e) = χ and g(G−e) = g.

Therefore G ∈ S, and the claim follows.
For every graph G in S let

M(G) = {x ∈ V (G) | d(x) < r},

and let m(G) = max{d(x, y) : x, y ∈ M(G)}.
Let S′ be the set of graphs in S with the maximum number of edges, and let S′′ be the

graphs G in S′ for which |M(G)| is maximum. Let G be a graph in S′′ such that m(G) is
maximum and let u, v ∈ M(G) such that d(u, v) = m(G). The proof will be complete if
we show that M(G) = ∅.

Claim 2.2. m(G) ≤ g − 1. Suppose that m(G) ≥ g. Let P = (u, x1, x2, . . . , xg−1, xg =
v) be an uv-geodesic. If there exists a χ-coloring Γ of V (G) such that Γ(u) ̸= Γ(v),
then the graph G′ obtained from G by adding the edge uv is in S and |E(G′)| > |E(G)|,
contradicting that the size of G is the largest possible. So, for every χ-coloring Γ of V (G) it
follows that Γ(u) = Γ(v). Since xg−1v ∈ E(G), we have that Γ(u) ̸= Γ(xg−1). Hence the
graph G′ obtained from G by adding the edge uxg−1 is also in S and |E(G′)| > |E(G)|,
contradicting the selection of G. Therefore d(u, v) = m(G) ≤ g − 1.

Let W be the set of vertices w in G such that either d(u,w) ≤ g − 1 or d(v, w) ≤ g.
By counting the set of vertices at distance at most g − 1 from u and at distance at most g
from v it follows that

|W | ≤
g−1∑
i=1

(r − 1)i +

g∑
i=1

(r − 1)i < |V (G)|.

Since |V (G)| > |W |, there exists a vertex x1 in V (G) \ W and d(u, x1) ≥ g and
d(v, x1) ≥ g + 1. As d(u, x1) > m(G) and u ∈ M(G), then x1 /∈ M(G) and so
d(x1) = r. Moreover, there exists an edge e incident with x1 whose deletion does not
affect the chromatic number and the girth of G (because G ∈ S). Assume that e = x1x2.

Observe that d(v, x1) ≤ d(v, x2)+1, therefore d(v, x2) ≥ d(v, x1)− 1 ≥ g+1− 1 =
g > m(G), and x2 /∈ M(G), so d(x2) = r.

If there exists a χ-coloring Γ of V (G) such that Γ(x1) ̸= Γ(u), then let G′ be the graph
obtained from G by deleting the edge x1x2 and adding the edge ux1. Note that G′ ∈ S′,
x2 ∈ M(G′) and every vertex x in M(G) (with the possible exception of u) belongs to
M(G′). By the way was chosen G, it follows that |M(G′)| ≤ |M(G)|, so u /∈ M(G′)
and |M(G′)| = |M(G)|. Therefor, dG′(u) = r and G′ ∈ S′′. If |M(G′)| = 1, then
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M(G) = {u} and u = v. Since dG′(u) = r, hence, dG(u) = r − 1. Therefore G contains
exactly one vertex of degree r − 1 and n − 1 vertices of degree r. Then r − 1 and n − 1
are even, yielding a contradiction because n is a multiple of r − 1.

Therefore v, x2 ∈ M(G′) and then

dG′(v, w2) ≤ m(G′) ≤ m(G) ≤ g − 1.

Let T be an vx2-geodesic in G′. If T is totally contained in G, then the length of T is
at least g, giving a contradiction. Therefore T uses the edge ux1 and either T contains an
vu-path totally contained in G of length at least m(G) or an vx1-path, also contained in G,
of length at least g + 1. In both cases l(T ) > m(G′), a contradiction.

Thus, every χ-coloring of V (G) assigns the same color to u and x1. Let Γ be a χ-
coloring of V (G). Since x1x2 ∈ E(G), it follows that Γ(u) ̸= Γ(x2). Let G′ be the
graph obtained from G by deleting the edge x1x2 and adding the edge ux2. Note that
v, x1 ∈ M(G′). Let T be an vx1-geodesic in G′. If T is totally contained in G, then the
length of T is at least g+ 1, leading to a contradiction. Therefore T uses the edge ux2 and
either T contains an vu-path totally contained in G of length at least m(G) or an vx1-path,
also contained in G of length at least g + 1. In both cases l(T ) > m(G′), a contradiction.
Therefore M(G) = ∅.

If we consider the order of the graph used in the previous proof, we can obtain an
upper bound for the order of an (r, g, χ)-cage (in terms of the order of a (−, g, χ)-cage) is
obtained. For more references on the order of graphs with girth g and chromatic number χ,
please consult [6].

Corollary 2.3. Let g ≥ 3 and χ ≥ 2 be integers. Let G be an (−, g, χ)-graph with order
n1. If r > ∆(G), then

n(r, g, χ) ≤ r(r − 1)g + n1(r − 1).

Proof. The result is obtained by simplifying the expression (r−1)n1+2(r−1)+
∑g−1

i=1 (r−
2)(r − 1)i +

∑g
i=1(r − 2)(r − 1)i.

The Brinkmann graph has order 21 and is an example of a (4, 5, 4)-cage [3]. Chvátal [5]
showed that the Grötzsch graph, which has maximum degree 4, is the smallest 4-chromatic
graph with girth 4. Using these results and Corollary 2.3, the following conclusions are
obtained.

Corollary 2.4. If r ≥ 5 is an integer, then

• n(r, 5, 4) ≤ (r − 1)(r5 − 4r4 + 6r3 − 4r2 + r + 21).

• n(r, 4, 4) ≤ (r − 1)(r4 − 3r3 + 3r2 − r + 11).

3 Constructive proofs
In this section we give constructive proofs of the existence of (r, g, χ)-graphs for various
values of these parameters r, g, χ.
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Certainly, (r, g, 2)-graphs are only possible for even g since a graph has chromatic
number 2 if and only if it is bipartite, and a graph is bipartite if and only if it has no odd
cycles.

Let G and H be two graphs. The Kronecker product of G and H , denoted as G ⊗H ,
is the graph with vertex set V (G ⊗ H) = V (G) × V (H) and edge set E(G ⊗ H) =
{(u, v)(u′, v′) | uu′ ∈ E(G) and vv′ ∈ E(H)}. Observe that G ⊗H has order |V (G)| ·
|V (H)| and size 2|E(G)| · |E(H)|. Moreover, if (u, v) ∈ V (G⊗H), then dG⊗H(u, v) =
dG(u) · dH(v).

It is known that if G is a graph with girth g, then G⊗K2 is a bipartite graph, and it is
disconnected if and only if G is bipartite. Moreover, if g is even, then the girth of G⊗K2

is equal to g [14].
We use the Kronecker product to show that (r, g, 2)-graphs exist for all r ≥ 2 and even

g ≥ 4.

Theorem 3.1. For every pair of integers r ≥ 2 and g ≥ 4 even, there exists an (r, g, 2)-
graph.

Proof. Let r ≥ 2, g ≥ 4 be even and let H be an (r, g)-graph. If H is bipartite, then H is
an (r, g, 2)-graph. If H is not a bipartite graph, then consider the graph G = H ⊗K2. By
properties of Kronecker product G is a bipartite (r, g)-graph and thus, χ(G) = 2 and the
result follows.

As noted earlier, this result implies, from [1], that (r, g, 3)- graphs exist for all r ≥ 2
and g ≥ 3.

In [1], the order of (r, 3, 3)-cages were determined for all r. The next value of interest
is the order of (r, 4, 3)-cages. Next, we bound this number.

Theorem 3.2. Let r ≥ 2, then:

3r/2 ≤ n(r, 4, 3) ≤ 4r − 2.

Proof. It is quite easy to show that every (r, g, 3)-graph has order at least 3r/2. For the
upper bound, consider the complete bipartite graph Kr,r, and let M be a matching of Kr,r.
Let w1, w2, . . . , wr be a set of vertices obtained by subdividing the edges of M . Finally,
let G be the graph obtained by adding r − 2 vertices u1, u2, . . . , ur−2 and making them
adjacent to each vertex in w1, w2, . . . , wr. Observe that G is a (r, 4, 3)-graph of order
4r − 2. Thus the order of a (r, 4, 3)-cage is bounded between 3r/2 and 4r − 2.

In Theorem 3.1 we showed that for given girth g ≥ 3 and chromatic number χ ≥ 2,
we can find (r, g, χ)-graphs for r sufficiently large. In our next theorem we show that
beginning with a graph of girth g ∈ {4, 5, 6}, chromatic number χ ≥ 2 and maximum
degree ∆, there is a (r, g, χ)-graph with r = ∆.

Theorem 3.3. Let G be a (−, g, χ)-graph for g ∈ {4, 5, 6} with maximum degree ∆. Then
there exists a (∆, g, χ)-graph.

Proof. For any graph G let Z(G) = {v ∈ V (G) | d(v) < ∆} and let D(G) = {k | k =
d(v) for some v ∈ Z(G)}, that is, D(G) is the set of degrees of vertices in G less than ∆.
For g = 4, let G be a graph with girth 4 and chromatic number χ. Such a graph exists by
the aforementioned results of Mycielski [10] and Erdös [9]. Let G′ be a copy of G, and let
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v′ denote the copy of the vertex v ∈ V (G) in G′. Consider the graph G1 = G ∪G′ + E′,
where E′ = {vv′ | v ∈ Z(G)}. Note that E′ forms a matching between the sets V (G)
and V (G′), ensuring that the girth of G1 remains 4. Moreover, G1 is also χ-chromatic.
Let Γ : V (G) → {1, 2, . . . , χ} = [χ] be a proper vertex coloring of G and let σ be a
permutation of [χ] without fixed points, that is, σ(i) ̸= i for every i ∈ [χ]. Let φ be the
vertex coloring of Gi such that φ(v) = Γ(v) and φ(v′) = σ(Γ(v)). Then φ is a proper
χ-coloring of G1, and since G1 contains a copy of G then it must be χ-chromatic. Finally,
if Z ̸= ∅, then D(G1) = (D(G) + 1) \ {∆} = {a+ 1 | a ∈ D(G)} \ {∆}.

Next, let G′
1 be a copy of G1 and form a graph G2 = G1∪G′

1+E′
1, where E′

1 = {uu′ |
u ∈ Z(G1)}. Using the same reasoning as the previous case it follows that χ(G2) = χ,
and observe that D(G2) = (D(G1) + 1) \ {∆}.

We can continue this process by considering a graph Gi, creating a copy of it, and
adding a matching between the vertices in Z(Gi).

This process ends after ∆(G) − δ(G) steps. The resulting graph is a ∆-regular graph
with girth 4 and chromatic number χ.

For g ∈ {5, 6}, let G be a graph with girth g, chromatic number χ and maximum degree
∆.

Let (M,S) be such that M is a maximum matching in the subgraph of G induced by
Z(G) and S = Z(G) \ V (M). Then S is an independent set, since otherwise we can add
an edge to M , contradicting its maximality.

We can construct a graph G1 such that V (G1) = V (G)×{1, 2} and E(G1) = C1∪C2∪
Ls where Ci = {{(u, i), (v, i)} | {u, v} ∈ E(G)} for i = 1, 2 and Ls = {{(u, 1), (u, 2)} |
u ∈ S}. Observe that G1 was constructed as two copies of G and and a matching between
vertices in S. Hence, G1 has girth g since the cycles that go through an edge in Ls must
have length at least 6, because S is an independent set. Additionally, G1 is χ-chromatic
since G1 contains a copy of G and we can give a χ-coloring as follows: Let Γ be a χ-
coloring of G and let σ be a permutation of the set {1, 2, . . . , χ} with no fixed points, that is
σ(i) ̸= i for any i. Then we can color G1 with the coloring ρ such that ρ(u, 1) = Γ(u) and
ρ(u, 2) = σ(Γ(u)). By construction ρ is a proper χ-coloring, therefore G1 is χ-chromatic.

Now we construct a graph G2 such that V (G2) = V (G1)×{1, 2}, and E(G2) = E1∪
E2 ∪ LM , where Ek = {{(u, i, k), (v, j, k)} | {(u, i), (v, j)} ∈ E(G1)} for k = 1, 2 and
let M be the perfect matching in Z(G) \ S. Define LM =

⋃
{a,b}∈M L{a,b} and L{a,b} =

{{(a, 1, 1), (a, 2, 1)}, {(b, 2, 1), (a, 1, 2)}, {(b, 1, 2), (a, 2, 2)}, {(b, 2, 2), (b, 1, 1)}}. Finally,
G2 is constructed as two copies of G1 and the edges in Lm joining them. Observe that
G2 has girth g since M is a matching and the new cycles formed with the edges in LM

are of order at least 6. Similarly, G2 is χ-chromatic since it contains a copy of G1 and
we can color G2 as follows. Let ρ be the χ-coloring of G1 previously defined. Let
φ be such that φ((a, i, j)) = ρ((a, i)). Then φ is a proper χ-coloring of G2 since the
edges in the copies of G1 and the edges in LM are well colored. Moreover observe that
D(G2) = {a+ 1 | a ∈ D(G)} \ {∆}. So the graph G2 is a graph such that the degree of
the vertices of G that do not have degree ∆ is increased by one. By repeating this construc-
tion we can obtain a graph ∆-regular, with girth g and chromatic number χ and the result
follows.

To obtain a (r + 1, g, k)-graph from a (r, g, k)-graph, we use a restatement of Sachs’
classic construction of (r, g)-graphs in [13]. Exoo and Jajcay introduced this adaptation in
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[7] and called it a generalized truncation. A generalized truncation requires four elements.

1. A graph of order r with vertex set V (H) = {u1, u2, . . . , ur}.

2. A finite r-regular graph G.

3. A set of darts D(G) = {−→vw | v, w ∈ V (G)}. Then, there is a pair of opposing darts
associated with each edge of G, such that each pair of darts connects the two end-
points of its respective edge, but each dart starts at a different end. Thus, |D(G)| =
2|E(G)|.

4. A function mapping ρ from D(G) to the set {1, 2, . . . , r} satisfying that for any
vertex v of G, the darts starting from v all receive different labels, i.e. ρ maps the
darts emanating from each vertex onto the set {1, 2, . . . , r}. Each ρ mapping is called
a vertex-neighborhood labeling of G. Because there is no restriction to the values of
ρ for the darts ending in each vertex, any assignation of all the values {1, 2, . . . , r}
to the darts starting in each vertex can be a vertex-neighborhood labeling of G.

The generalized truncation of a k-regular graph G with a vertex-neighborhood labeling
ρ by the graph H is the graph T (G, ρ,H) such that:

• V (T (G, ρ,H)) = {uv
i | i ∈ {1, 2, . . . , r} and v ∈ V (G)} and

• E(T (G, ρ,H)) = {uv
i u

v
j | (ui, uj) ∈ E(G) and v ∈ V (G)} ∪ {uv

i u
w
j | v, w ∈

V (G), v ̸= w, vw ∈ E(G), ρ(−→vw) = j, and ρ(−→wv)) = i}.

Two known results that help understand the effects of this construction and its relation-
ship with the girths of G and H are the following.

Lemma 3.4 ([8]). Let T (G, ρ,H) be a generalized truncation of a r-regular graph G by
a graph H of order r. The subgraphs of T (G, ρ,H) induced by the sets {uv

1, u
v
2, . . . , u

v
r},

v ∈ V (G), are non-overlapping isomorphic copies of H that partition the vertex set of
the truncation, and the edges that connect different copies of H form a 1-factor of the
truncation.

Theorem 3.5 ([2]). Let G be a finite (r, g)-graph with a vertex-neighborhood labeling ρ,
and let H be a (r0, g0)-graph of order r. The generalized truncation graph T (G, ρ,H) is
a (r0 + 1)-regular graph of girth not smaller than min{2g, g0}, and if g0 ≤ 2g, then g0 is
the exact girth of T (G, ρ,H).

In what follows, we take H to be an (r, g, k)-graph and G to be a (|V (H)|, g′)-graph.
Since H is an induced subgraph of T (G, ρ,H), it follows that χ(T (G, ρ,H)) ≥ χ(H) =
k. The last observation together with the previous known results about T (G, ρ,H) give us
the next remark.

Remark 3.6. Let H be a (r, g, k)-graph, and let G be a (|V (H)|, g′)-graph, g′ ≥ g/2.
Then

1. The graph T (G, ρ,H) is (r + 1)-regular.

2. The girth of T (G, ρ,H) is equal to g.

3. The chromatic number of T (G, ρ,H) is at least k.



Art Discrete Appl. Math. x (xxxx) #Pn 9

Theorem 3.7. Let k ≥ 3, let H be an (r, g, k)-graph of order h, and let G be a connected
(h, g′)-graph with g′ ≥ g/2. Then there is a function ρ such that T (G, ρ,H) is a (r +
1, g, k)-graph.

Proof. Let H be an (r, g, k)-graph of order h and let φ be a k-coloring of H . We may
assume that for each chromatic class Ci, |Ci| < h/2, if not we take two copies of H , H1

and H2, color H1 with φ and H2 with a permutation of the colors of φ in order to obtain a
graph and a coloring with the desired property.

Let GH be the set of all T (G, ρ,H) graphs. Of all the graphs in GH and all possible k-
colorings of the graph H with the property that |Ci| < h/2 for each 1 ≤ i ≤ k, choose the
pair such that the graph G ∗H ∈ GH has the minimum number of monochromatic edges
(an edge is monochromatic if its vertices have the same color). Observe that since each
copy of H is colored by φ, the coloring of G ∗H may not be a proper coloring. Assume,
for a contradiction, that G ∗ H has a monochromatic edge. Since each subgraph Hv is
proper colored, this edge must be an external edge {uα

i , u
β
j }, w.l.o.g. φ(uα

i ) = φ(uβ
j ) = 1.

Claim 3.8. Every external edge of Hα and Hβ has at least one vertex of color 1.
In order to state the Claim, We prove that if φ(uα

k ) ̸= 1 (or φ(uβ
k) ̸= 1), then the

external edge {uα
k , u

γ
ℓ } ({uβ

k , u
γ
ℓ } resp.) is such that φ(uγ

ℓ ) = 1.
For a contradiction, suppose that φ(uγ

ℓ ) ̸= 1. Thus, we may swap the external edges of
{uα

k} and {uα
i } and construct the graph

D = G ∗H ∪
{
{uα

i , u
γ
ℓ }, {u

α
k , u

β
j }

}
−

{
{uα

i , u
β
j }, {u

α
k , u

γ
ℓ }

}
,

which is a graph in GH with lesser monochromatic edges than G ∗H , a contradiction, and
the Claim follows.

Let φ(uα
x) ̸= 1, and let (uγ

y) = N(uα
x) \ V (Hα), by Claim 3.8, φ(uγ

y) = 1. Let uγ
r be

a vertex such that φ(uγ
r ) ̸= 1 and let uδ

s = N(uγ
r ) \ V (Hγ). If φ(uδ

s) ̸= 1, then consider
the graph

D = G ∗H ∪
{
{uα

i , u
γ
ℓ }, {u

α
k , u

β
j }

}
−

{
{uα

i , u
β
j }, {u

α
k , u

γ
ℓ )}

}
.

Observe that D ∈ GH has the same number of monochromatic edges as G∗H , and Hα has
an external-edge with no vertex of color 1, contradicting Claim 3.8. Thus, if γ is a neighbor
of α or a neighbor of β, then the external edges of Hγ must have a vertex of color 1. Since
G is connected, we may apply this argument in each copy of H and so, every external edge
must have a vertex of color 1, which is impossible, because, by hypothesis, there are more
vertices which has color different from 1 than vertices of color 1.

Thus, G ∗H has no monochromatic edges, φ is a proper coloring and, by Remark 3.6,
G ∗H is an (r + 1, g, k)-graph.

As mentioned before, the Brinkmann graph B has order 21 and is an example of
a (4, 5, 4)-cage. Using this result and Theorem 3.7, there is a generalized truncation
T (K22, ρ, B) which is a (5, 5, 4)-graph. The order of this graph is 22(21) = 462 which is
a much better lower bound than the one obtained by item 1 of Corollary 2.4.
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