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5214, respecti¥@ly. Using the gene prediction tool Augustus, it was possible to predict 8,666
genes for the single assembly and 11,690 genes for the hybrid assembly. The database used
for the functional annotation was the Basidomycetes division of the RefSeq protein
database of NCBI. From the protein sequence alignment, 11252 out of the 11690, matched
with an E-value of 10E-50 and 3150 proteins have an EC number assigned. As part of the

search for enzymes with the capability to hydrolyze biomass we found 391 CAZymes, 52



FOLymes and 38 possible proteases. To identify the biological relationships with other
Leucoagaricus, a comparative genomics analysis was carried out using 4 genomes
composing the pangenome for these species with a total of 18052 gene clusters, out of this
number, 383 gene clusters belong to the coregenome and 17669 to the accessory genome.

The principal relationships among these species are the functional GO terms.

IMPORTANCE

This paper presents the first genomic assembly for the basidiomycete

gongylophorus LEU184964, a symbiont of the ant Atta
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Leucoagaricus gongylg at establishes a mutualistic relationship
Atta and Acromycex (1). These ants collect
ycete fungus. In this natural condition, the fungus

th, forming a network similar to a white sponge on the

as; a fraction of this sugars is used by the fungus to satisfy its
energy I s, the another fraction is accumulated in the form of glycogen within

globular stru® called gonglydians, which serve as food for the ants (2).

Various groups have worked on the association of L. gongylophorus with various species of
ants and have reported various aspects of its metabolic capabilities, as well as the
sequences of genes, proteins and genomes (3), (4), (5). The number of sequences reported
for this organism is low compared to other widely characterized organisms such as

Aspergillus niger. In the GenBank Database there are registered 24,007 nucleotide



sequences and 143 protein sequences for L. gongylophorus, while for A. niger there are
85,933 nucleotide sequences and 169,950 protein sequences. The genetic material in
eukaryotic systems differ in terms of composition, structure, organization, and complexity,
these variations have a direct impact on the assembly of a post-sequencing genome (6). In

general, fungal genomes are compact, with high gene densities, low levels of repetitive

content and fewer introns. Size variations can be considerable, we can find differences

recently, even allow separation of the different chromosomes for diploid and polyploid

organisms.

Gene prediction tools operate algorithms to find defined structures within contigs such as

introns and exons. Augustus is a gene and protein prediction tool, often referred to as AB



initio gene predictors because they use mathematical models rather than external evidence

to identify genes and determine their intron-exon structures (13).

As the number of sequenced and assembled genomes has increased, various analyzes such
as pan-genomics have emerged for their comparison and withdraw biological meaning.
Various methods such as EUPAN(14), GET HOMOLOGUES (15), and PanVC (16) can be used

to generate pangenes from different sets of species. The pangenome is mage up of the core

genome and the accessory genome (17). The coregenome contains tHghs 88ne clusters
conserved in all the analyzed species, generally essential g
accessory genome is formed by of clusters of specific gen
within an organism generally related to functions that are

species.

The main objective of the present study is to const enome assembly for the
i mexicana ant and to

ic tools to characterize the

of the single (Illumina MiSeq) and hybrid (Illumina MiSeq + Roche 454)
obtained for L. gongylophorus LEU18496.

Single Hybrid Aylward,
20132
Total length 151 379 115 137 005 739 91 322 395
Contigs number 48 141 48 287 58 433
N50 8573 5214 2096

N90 978 1136 699



Mismatches (N‘s) 798 0 375

GC Content (%) 36.23 36.09 35.03

Predicted genes 8666 11690 5497°
Technology lllumina lllumina + Roche 454 Roche 454
Assembler SPAdes v. 3.9.0 SPAdes v. 3.15.0 Newblerv. 2.3

9Source is from: https://www.ncbi.nlm.nih.gov/assembly/GCA_000382605.1

bGene prediction performed in this work using the genome assembly reported by Aylward et al., 2013.

ismatches. The
e by 798 bp. This is an

0.53. The elimination of

ntinuous solid line that corresponds to a match
between the entical sequences will obviously have a diagonal line in
0), 57.53 % of they have an identity greater than 75%
for more details). The difference in the total number of
d their correct alignment within the contigs can explain part of the

differencesii metrics analyzed in Table 1.

Annotation and comparative genomics of genome assemblies of L. gongylophorus

LEU18496

The number of predicted genes differs between the single and the hybrid genome

assemblies, 8666 and 11690, respectively. These numbers are higher than the 5497 those



previously predicted for the assembly reported by Aylward et al., in 2013 for L.

gongylophorus Ac12.

Sequence homology analysis using BLASTp performed on both sets of predicted genes
allowed the identification of 8582 identical genes between both sets (25-1); of this number,

8364 sequences have alignments greater than 80% and an Evalue=10-75 (Supplementary

Material 3). A
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Figure 1: Merged func : 11690 proteins obtained from hybrid genome

ation tools. B: Best represented metabolic pathways

produced for the Basidiomycetes family, representing 96.25% of

e assembly. From this set of proteins, it was possible to assign 2286 EC

obtained by PANNZER and EggNog Mapper, it was possible to increase the number of proteins
with enzymatic function to 2673 and 3150, respectively. Out of the total of 11,252 proteins
found, 3,150 correspond to a metal genome for 26.94%. The best represented KEGG
metabolic pathways found during functional annotation include nitrogenous base

metabolism, amino acid metabolism. Central carbon metabolism is also widely represented,



fundamentally by pyruvate metabolism and the Glycolysis/Gluconeogenesis pathway (Figure

1, (panel B)).

As part of the description of the metabolism of L. gongylophorus LEU18496 made during the
functional annotation process, special attention was paid to pathways pertaining to central
carbon metabolism. An analysis of metabolic pathways using KEEG Pathways (22) yielded the

following results for these pathways according to the number of enzymes fawid: 27 Pyruvate

metabolism, 21 Glycolysis/Gluconeogenesis, 18 Citrate cycle (TCA @ 12 Pentose
Phosphate Pathway in scale from largest to smallest represented : i

In the case of the functional annotation of enzymes with C
we found 391 CAZymes, 52 FOLymes and 38 possibl
of L. gongylophorus LEU18496 ( Table 2).

TABLE 2: Proteins with CAZymes, FOLy and Prg8 ity found in the hybrid

genomic assembly of L. gongylophorus LE

P N
Group Family Annotation Enzymes

GH
GH1

12

35

16

2

6

14

Chitinase 13

Mannosidase 6

a-1,3-glucanase 3

Endoglucanase 16

GlycosylTransferase 31

Chitin synthase 22

a-1,3-glucan synthase 14

CAZymes GT8 Glycogen synthase 4
GT20 Trehalose-phosphate synthase

GT47 GalactosylTransferase 25

PL Polysaccharide Lyases 5

PL1 Pectine/Pectate lyase 5

PL4 Rhamnogalacturonan endolyase 3

CE Carbohydrate Esterase 3

CE4 Xylan esterase 6



CE5 Cutinase 2

CE16 Acetylesterase 3
PE Pectinase 5
MN MannosylTransferase 26
E Estearase 6
R Reductase 2
AA Auxiliary Activities 38
CBM Carbohydrate-Binding Module 7
GO Glyoxal oxidase 22
FOLymes LO Laccase 27
PO Peroxidase 3
Protease P Protease 38

The Cazymes group was the most abundant group

Glucosidase/Xylosidase (GH3) superfamilies accou

be seen, 16 cellulases (GH5), 2 xylz iases (GH19), 16 endoglucanases
(GH74) and 5 pectinases (PE)

We performed compa gdicted protein sequences of the hybrid

assembly of L. gongylo d other genome assemblies of the same genus

available in N



mmm Leucoagaricus gonglylophorus LEU18496
rm Leucoagaricus gonglylophorus Acl2
1 Leucoagaricus Symcos

Leucoagaricus leucotithes

3060

Figure 2 Consensus core and@pan-gé ned from the clusters using the GET

MCL (-M).

The pangenom€ is divided into the coregenome and the accessory genome: 207 with 3775 L.
SymCos and 3708 L. gongylophorus LEU18496, these two species contribute with the highest
number of gene clusters to the accessory genome, it should be noted that they are the largest
proteomes used in this analysis. L. gongylophorus LEU18496 and L. gongylophorus AC12 share

317 exclusive gene clusters, a low value given that they belong to the same species.



The accessory genome of all genomes combined encodes 17,669 (98%) protein clusters. This
encoded 5,266 (29.8%) protein sets shared by at least two isolates and 12,403 (70.2%) unique
clusters found in a single isolate. According to a gene enrichment analysis performed for the
coregenome, the most represented functions are transferase activity 10%, oxidoreductase

activity 9% and protein binding and metabolism with 7% each (Supplementary material 6)

DISCUSSION

assemblies using Illumina and Roche 454 technologies have b

such as Hevea brasiliensis (25) and Mytilus coruscus . in 2017 used

fungus Grosm@nnia clavigera by combining sequencing technologies and assembly
methods, the assembly generated from lllumina data alone produced contigs with N50 with
a value of 24500 bases. In contrast, an assembly from Roche 454 reads conformed contigs
with N50 with a value of 7800 bases. On the other hand, the Roche 454 array contained

approximately 2.5 Mb of sequences not found in the lllumina array. These investigations



show that Illumina produces larger contigs but Roche 454 improves the resolution of areas
rich in repetitive sequences by increasing sequencing depth (30). In Table 1 is presented a
similar number of contigs for both assemblies, nevertheless this difference renders a
significant difference in the prediction of genes. In particular, when using the hybrid
assembly with the lowest N50, a greater number of genes can be predicted. This indicates

that a more fragmented genomic assembly can favor the appearance of genes when using

By performing a hybrid genomic assembl

With the functional annotation process it

especially aromatic compounds due to the presence of CAZymes and FOLymes enzymes.

The sequencing of the genome of several basidiomycetes reveals the importance and

conservation of these enzyme groups (24).



The analysis of CAZymes families showed that the GH superfamily (Hydrolases) is widely
represented, the large number found corresponds to the wide variety of metabolic
processes to which these enzymes are associated (36) and to the low annotation functional
that can be found in databases for enzymes belonging to the genus Leucoagaricus. Other
families of enzymes that participate in the degradation of lignocellulosic substrates were

found: the GH74family that participates in the formation of cellobiose as part of the

of L. gongylophorus to grow on different lignocellulosic sub

fact that these enzymes are present in the assembly of t

tion of toxic components

that produces them on

drive the genetic variation observed.

As various research groups have reported, the size of the coregenome found should be
substantially larger (41,42), although various elements may support the result obtained in
this investigation. The dot plot analysis performed for genomic assemblies of the same

species shows considerable variations in the alignment of genomic sequences, thus the



predictions of gene products from these sequences vary considerably. Thus, when
comparing proteomes belonging to species of poorly annotated species, it is difficult to find
phylogenetically conserved functions. Highlighting the conservation in the coregenome of
enzymes involved in the synthesis of glycogen and the degradation of lignocellulosic

material, distinctive capacity of the genus Leucoagaricus (43)(44)

MATERIALS AND METHODS

Fungal strain L. gongylophorus LEU18496 (GenBank accessij
isolated from leaf cutter ants Atta mexicana, Coatepec, Ve

propagated on malt extract agar (MEA-LP),

Genomic DNA extracti 8496 was grown in 125 mL Erlenmeyer

ium (Difco 233520) without amino acids and

DNA MiniPrep kit (Zymo Research) following the
and nanodrd 2rmo), the 260/230 nm and 260/280 nm absorbance ratios were 1.8 and
1.96, respectively. The final concentration measurement by fluorescence was 16 ng/uL.
Genomic DNA was sequenced at Langebio, Cinvestav (lrapuato, Mexico) using sequencing

by synthesis (SBS) with lllumina MiSeq platform 2x250 format with coverage of + 54x and



sequences of £ 250 bases in length and by massive pyrosequencing with GS FLX+ Roche 454

platform with coverage of + 20x and sequences of + 650 bases in length .
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Figure 3 Flow diagram of the assembly proces d func

Blast2Go: Omics Box

nal annotation of the

genome of L. gongylophorus LEU18496.

processed for quality control

ion 0.39 (46) . The data obtained for

used SPADES Version 3.15.0 (49) to perform

data) and Hybrid (lllumina + Roche data) genome

assembp itted as novel genome and assembly for L. gongylophorus to the
NCBI data'q@s . //www.ncbi.nlm.nih.gov/(50) (Bioproject SUB10717702,

BioSample SAMN23428376).

Gene prediction and functional annotation of the Hybrid genome assembly of L.

gongylophorus LEU18496



Gene prediction of both genome assemblies of L. gongylophorus was performed with
the Augustus pipeline Version 3.5.0 (13). For the training of the Augustus tool, 5090
gene sequences reported for the genus Leucoagaricus in the NCBI database (51) were
used. From this set of genes, random sets of genes were extracted using RandomSplit.pl
to carry out several trainings to the tool. Genes for the L. gongylopohurus Ac12 genome

assembly (BioSample: SAMNO02981481, BioProject: PRINA179280) were also predicted

using the same training parameters described above.

Functional annotation of predicted protein sequences
Blast2Go platform Version 6.0.3 (52), the Protein ANNots

Version 2 tool (53) and the EggNog Mapper web system (

using the OrthoMCL v1.4 (55) and COGtriangles (56) algorithms: min %coverage in
BLAST pairwise alignments (range [1-100],default=75) and max E-value (default=1e-
05,max=0.01) as control parameters. The compare_cluster.pl and
parse_pangenome_matrix.pl scripts from GET_HOMOLOGUES pipeline were used to

compile the corresponding pangenome matrix and calculate the core (genes present in



95% or more of the MAGs) and accessory (genes present in less than 95% of the MAGs)
genomes. Visualization of the pangenome data was performed using the Upset

program (57).
Charts and Data Analysis .

All data presented were filtered and analyzed using the Microsoft Excel statistical

package (58). The bar chart presented in Figure 1 was built using athworks,

Inc., Natick, MA, USA) and the Venn diagram in Figure 2 was made hon script

in PyCharm 2021.3.3 (59).
SUPPLEMENTAL MATERIAL

Supplementary material 1 Metrics correspondi the size dis-

blies of Leucoagaricus

fa KEEG PATHWAYS analysis performed in Blast2Go

ontained in the assembly and involved in central carbon

HOMOLOGUE®analysis performed for 4 genomes belonging to species of the genus

Leucoagaricus

Supplementary material 6 Gene enrichment analysis using Blast2go for gene clusters

belonging to the coregenome of the 4 species analyzed
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Metrics corresponding to the comparison of the size distribution of the contigs among

different genomic assemblies of Leucoagaricus gongylophorus analyzed.

All statistics are based on contigs of size >= 500bp, unless otherwise noted (e.g., "# contigs (>= 0 bp)" and "Total length (>= 0 bp)" include all contigs).
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FIG 2:

Report obtained using the Compare Assembled tool in Kbase.




Suplemmentary Material 2

Linearity analysis of genes belonging to the hybrid assembly performed for
Leucoagaricus gonglyophorus LEU18496 and the genomic assembly reported for

Leucoagaricus gonglyophorus Ac12
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FIG3: Dot plot obtained using the Dgenies tools for the alignment analisis of the

hybrid and single assembly.



Suplemmentary Material 3

Results of the comparison between the hypothetical proteins predicted for the

constructed genomic assemblies using Blast2Go
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Suplemmentary Material 4

Results of a KEEG PATHWAYS analysis performed in Blast2Go to determine the enzymes

contained in the assembly and involved in central carbon metabolism
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FIG5: Enzymes found for the Glycolysis/Guconeogenesis pathway



PYRUVATE METABOLISM | 1212 Meyiglyexal LLactaliehyrle

12123 ———1{=C 111283 O—
o
Glyrolysis ~]

Glyeire, sering and
Y‘;m metsbolor 11178 [.Lactaldehyde
(21131 ' : »0
— | 41178 i s 11.179
41132 Plosphoe nol- | dic Oxy]ate
2o prwite | (®)-S-Letod [12123] (12122
41133 ——*o g
a118|  3751][2792 C
[ ZH: wyethylens-
3 asfgso xyﬁuyl 421130
11128
11096
Nicotinate avd nicotinaraide | _ __ 11312
e tabolisra N | 1124
\
N 1125
T ——
soleucire bosynthesis IEN

7242

Propanoate
Glyoxate :
mygbélism olisi
(5)- Ml o.‘:_)__/' [554) .
mmtc Succinals
3-Cathoxy-3-hydroxy-
4-nwﬂ1)dpycnhx}\]g£=y 1L1afl1.112

(R)-2 Ethyboalate 08— 2336 | ——[23313 O————{ Lowsino bicoynhoois | [ 1127 |[ 1122

B Acetowcetpl-Cols Homocitate EutG 1155
Bubposk lo————— —o«—2319 ——[233 1} —» o————o-
Malonyl-Cofs
0 6412 ?————o- Fatty arid binsynthesis Ftharnl

2-Propyimalate
L____D- Biosynthesis of 12-, 14- and

| -re mbered macm
[
|
l

- —P(Bmsynmeﬂs of enediyre a.nnbloucs)

- ———{ Biosyubesisof type I olske i backone )

00620 93/21
{z) Kanehisa Lahoratories

FIG6: Enzymes found for the Pyruvate matabolism pathway
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Suplemmentary Material 5

This material contains graphs related to the GET HOMOLOGUES analysis performed for

4 genomes belonging to species of the genus Leucoagaricus
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FIG9: GET HOMOLOGUES RESULTS A: mathematical adjustment made for the data

obtained by the OMCL algorithm, B: Venn diagram of the418consensus
COREGENOMA and B2: Venn diagram of the consensus PANGENOMA obtained by

compare cluster python script



Suplemmentary Material 6

Gene enrichment analysis using Blast2go for gene clusters belonging to the

coregenome of the 4 species analyzed
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FIG10: Pie plot of Gene Ontology functions found during gene enrichment






