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Abstract 

Genome scale metabolic models (GSMM) are common tools for the exploration of metabolic 

engineering approaches for the overproduction of desired industrial chemicals. Their 

reconstruction implies an intensive data searching and manual curation. Additionally, the 

gaps in the metabolic network are filled with experimental designs. The mathematical 

approach to use GSMM for the metabolic flux calculations and evaluation of metabolic 

engineering strategies is the flux balance analysis. The mathematical algorithm behind this 

approach is linear programming where in first instance the objective function is a biomass 

pseudo-reaction accounting for the precursors of the main macromolecules composing the 

cell. This equation is determined experimentally but, in many cases, this is taking from other 

organisms or not for the experimental range of analysis. In this work, we present an intensive 

analysis of the sensitivity of the composition of this pseudo-reaction and the metabolic flux 

calculations. We observed that in some ranges of growth  rate, the biomass mass composition 

impacts the flux distribution.  

 

Introduction  

Flux balance analysis is widely used for predicting metabolic fluxes using genomes scale 

metabolic models. It relies on linear programming where the restrictions of the linear 

optimization model are the mass balances for the internal metabolites and the exchange fluxes 



 

 

are the rates of the external metabolites crossing the cellular barrier. The matrix formulation 

of the linear constrains renders what is the so called the stoichiometric matrix; a sparse matrix 

where non-zero elements are the stoichiometric coefficients from the reactions present in the 

metabolism. This constrain-based modelling has been explored whit different approaches, 

some of them are focused in the objective using quadratic programming, bilevel o 

multiobjective formulations. Other approaches worked in the restrictions to include more 

information and restrict the space solution, such a regulatory information or enzymatic 

restrictions. In FBA the mathematical formulation of the optimization model has a key aspect 

which is the formulation of the biomass reaction. This is not a reaction that conserves the 

gene-protein-reaction (GPR) annotation, as the rest of enzymatic reactions in the metabolic 

network, it is defined as a pseudoreaction and it is constructed ad hoc with the purpose of 

including the molar content of the biomass precursors, such as, lipids, carbohydrates, amino 

acids, cofactors and energetic requirements (Feist and Palsson, 2010).This molar base 

formulation allows to include this pseudoreaction as part of the stoichiometric matrix.  

 

The details of the biomass composition are dependent on the experimental capabilities of the 

responsible in constructing the metabolic model and the growth rate conditions under study. 

In Saccharomyces cerevisiae, the content (%w/w) in RNA and protein increases linearly with 

the increment in growth rate, in opposition to the carbohydrates content. DNA, free amino 

acids and lipids have less variations (Nissen et al., 1997). In contrast, Escherichia coli protein 

composition decreases under different growth rates (Pramanik and Keasling, 1997). For both 

cases, the adjustment of the biomass composition was used to evaluate the flux distribution 

highlighting the sensibility of the calculations to the differences in biomass composition as 

function of growth rate.  

 

The exploration of this genetic algorithms (GA) is a population-based algorithm for global 

optimization that is inspired on natural selection. It mimics the process of the genetic 

combination among individuals within a population and the selection of the best genotypes 

that ensure the survival (Mirjalili, 2019b) . Many engineering discilines have make use the 

problems terms of mathematical modelling of biological process, it hase been used for the 

parameter stimatiation of  



 

 

 

 

Methodology 

 

Metabolic models of yeast 

To evaluate flux distribution and growth rate calculations, three version of the genome scale 

metabolic model of yeast were used. The Yeast8 metabolic model (Lu et al., 2019), and two 

derivates of this model when enzyme restrictions are imposed. One without protein pool 

constrain (ecYeast8) and the other one with protein pool constrain (ecYeast8_batch). The 

models were accessed through SysBioChalmers github repository and they were built with 

the Gecko toolbox  (Sánchez et al., 2017; Domenzain et al., 2022). The idea to evalute the 

threes version was to evaluate the viability of the genetic algorithm 

 

Experimental data 

The experimental data used for the simulations with the three metabolic models are in Table 

1. The experimental specific rates for eight different growth rates chemostat cultivations and 

one batch cultivation of the CENPK.PK strain, all of them in an aerobic condition (van Hoek 

et al., 1998; Bakker et al., 2000), see table in supplementary. 

 

 

Biomass pseudoreaction coefficients 

The biomass pseudoreaction is expressed as the sum of the precursors in molar proportions 

and it is related to the growth rate (flux) as: 

 

𝑣!"#$%& :								∑ 𝛾'𝐵' → 𝑏𝑖𝑜𝑚𝑎𝑠𝑠(
')*      (1) 

 

Where 𝛾' are the molar coefficients of the biomass precursors 𝐵'; in the biomass equation the 

precursors are grouped in lipids, carbohydrates, DNA, RNA, cofactors, ions and the energetic 

requirement as ATP. The growth rate (𝑣!"#$%&) is part of optimization problems in the FBA 

approach: 
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𝑣+ =	𝑣+_	/0%123 

 

𝛼 ≤ 𝑣+ ≤ 𝛽.						𝛼, 𝛽	 ∈ 	ℝ 

 

In total the biomass pseudoreaction formulated for the yeast metabolic models contains 67 

coefficients. ATP and water are equimolar, as well as the coefficients for nucleosides. 

Deoxyadenosine monophosphate (dAMP) and deoxythymidine monophosphate (dTMP) are 

equimolar, similarly, deoxyguanosine monophosphate (dGMP) and deoxycytidine 

monophosphate (dCMP) are in equimolar proportions. 

 

 

Genetic algorithm 

 

The genetic algorithm consists of the basic process initiation, selection, crossover, mutation 

(Mirjalili, 2019a) and in this case the rate of elitism to maintain a subset of best solutions and 

transferred to the next generation without modification, see flow diagram in supplementary 

figure. During the initialization and the mutation, biomass coefficients are modified within a 

defined interval like:  

 

𝑎 = 	𝛾' 	+ 	𝜀 ∗ 	𝛾'       (3) 

𝑏 = 	𝛾' 	− 	𝜀 ∗ 	𝛾' (4)      (4) 

𝛾',(3$ = 𝑎 + (𝑏 − 𝑎) ∗ 𝑟𝑎𝑛𝑑()|    (5) 

 

Where 𝜀, is the variation of the coefficient of the biomass precursor. The variation, up or 

down, is relative to the values of the coefficients in the genome scale metabolic model used. 



 

 

Initially, all the biomass coefficients had the same coefficient of variation, after performing 

the first simulations and evaluate the results, it was necessary to differentiate this for ATP 

and the rest of the molecules, as the values of the coefficients after running the genetic 

algorithm were too high for ATP.  

 

The fitness function is evaluated with the growth rate calculated using FBA (𝜇567) and the 

experimental value (𝜇380) in the follow expression: 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 	 *
9:!"#;:$%&9

      (6) 

 

 

The parameters of genetic algorithm are in Table 4. They were adjusted to have the final 

convergence, see supplementary data for the evaluations.  

 

Table 4. Parameters of the genetic algorithm 

 

Parameter value 

Number of genes M=100 

Generations MaxGen = 500 

Crossover rate Pc = 0.9 

Mutation rate Pm = 0.05 

Elitism rate Er = 0.1 

Coefficient variation 𝜖 = ± 30% 

ATP variation 𝜖 =± 10% 

 

 

 

 

 

 



 

 

RESULTS AND DISCUSSION 

 

Growth rate calculations 

 

The growth rate calculations in the genome scale metabolic is presented in Table 1. It is 

possible to observer the deviation   

 

Table 1. Genome scale models evaluations at different growth rates and conditions. Only two 

significant digits are taken for comparison. 

model                              experimental values of µ (h-1) 

chemostat  batch 

0.10 0.15 0.2 0.25 0.30 0.33 0.35 0.38 0.38 
Yeast8 0.09 0.10 0.11 0.16 0.28 0.34 0.35 0.39 0.43 
ecYeast 0.09 0.10 0.11 0.16 0.28 0.33 0.33 0.37 0.36 

ecYeast_batch 0.09 0.09 0.11 0.15 0.27 0.32 0.34 0.35 0.40 

 

Initially, the prediction capability of the genome scale models was evaluated taking the 

experimental specific rates available for yeast. The predictions for growth rates in three 

scenarios, 0.15, 0.20 and 0.25 h-1, where in the range of 27-47% higher, whereas for the rest, 

the deviation was less than 10%.  

 
 

Figure 1. growth rate predictions using flux balance analysis. Experimental data from  
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A genetic algorithm is used to adjust the biomass pseudoreaction coefficients resembling the 

changes in biomass composition as function of different growth rates and cultivation 

conditions. Eight scenarios for aerobic chemostat cultivation and one scenario for an aerobic 

batch cultivation were evaluated. According to genetic algorithms concepts, the size of the 

chromosome was 67 genes, which corresponds to the number of precursors coefficients in 

the biomass pseudo-reactions and the population size was 100 chromosomes.  

 

The first parameter of the evaluations were the crossover rate and mutation rate. Genetic 

algorithms are based on heuristics, which means that it is necessary the explore the impact 

of the parameters in the simulations. In general, there is a consensus for some of the 

parameters, for instance, the mutation rates might be in the range of 0.01-0.1 in order to avoid 

the destabilization of stable solutions; the value for the present simulations was 0.05. For the 

crossover rates we could identified diversity of the solution for the process. Several 

calculations of the algorithm were made in order to evaluate the progression of the fitness 

function, we could identify that for the case mutation rate and elitism rate, there was  no  

incidence on the number of generations needed. 

In the initialization and mutation process, the algorithm variates the values withing 

predefined range, relative to original value in the model, searching to the best fit that predicts 

the experimental growth rate. After the initial evaluations, all the cases to evaluate we could 

finally standardize the set of parameters to perform the comparations. This are in the table 

and include the deviation for the biomass coefficients (𝜖 = 	±30%) and ATP (𝜖7<= = ±10%).  

 

The conversion of the simulation for the cases 0.15, 0.20 and 0.25 h-1 reached the maximum 

number of generations and the deviations were reduced to a range 4-23%, whereas for the 

rest of the scenarios the number generation needed for a stable solution were in the range of 

100 generations and the experimental value was reached, see Figure 2. 



 

 

 
Figure 2. The performance of the initial parameters. 

 

   

   
Figure 3. Fitness function for the case when mutation rate is 0.1 for the three yeast models.  
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Figure 4. For the case when mutation rate was 0.2.  

 

The progression of the solution across the generations can be seen in Figure 3. The biomass 

coefficients area grouped according to the type of molecules. In the plots it can be seen the 

variations (𝜖) in each coefficient relative to its original value. The fitness function is the 

invers of the difference between the experimental value and the predicted value of the growth 

rate. The definition also implies that a value of 105 of the fitness function represents is a 

difference of 0.00001 between predicted and experimental value. If with define a tolerance 

value of the order of 105 for the fitness function and used as criteria to stop the calculations, 

some scenarios rapidly converge and fulfill this criterion.  
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Figure 5. For the case when growth is 0.1 h-1 we can see that ions and cofactors presenta a 

wide variation across the generations.  

 

In Figure 5 it is presented the progression of the solution in terms of the number of 

generations when growth rate is 0.1 h-1. It is interesting to observe that ATP, lipids, amino 

acids carbohydrates, RNA and DNA precursor have stable values whereas cofactors and ions 

variates almost stochastically. We present 500 generations. The variation of the cofactors are 

not affecting the production of growth rate, wheatear this feature is related to ion and cofactor 

accounted in the biomass models or it is the result of a biological impact has to be evaluated.  

 

In Figure 6 we represent the case for growth rate equal 0.2 h-1, in this case it was necessary 

the 1500 generation to reach the convergence.  

 

 
 

Figure 6. Coefficient variations when growth rate is 0.2 h-1.  

 

For the case of 0.2, the solution still not reached up to 500 generation and the value never 

reached the experimental value. To achieve the convergence of the values 0.15-0.25 h-1. In 



 

 

the first case we increase the glucose consumption up to 10% considering the experimental 

deviation. Again, the value was not achieved it.  

 

 
Figures 7. Variation of the coefficients when we increase the glucose consumption   

 

 

Conclusions 

  



 

 

SUPLEMENTARY 

 

Table S.1 Experimental value for the analysis of the flux calculations 

 
 

                                                 µ (h-1) 

chemostat batch 
mmol/(gDW h-1) 0.1 0.15 0.2 0.25 0.3 0.33 0.35 0.38 0.38 

qglucose 1.17 1.50 1.70 2.36 3.88 6.11 7.20 13.19 15.7 

qO2 2.9 4.1 5.2 7 9.5 7.2 6.9 3.9 
 

qCO2 2.8 4.2 5.3 7.3 9.8 12.2 13.1 21 
 

qethanol 
    

0.5 4.8 6 18.3 22.3 

qglycerol 
        

0.97 

qacetate 
        

0.52 

qlactate 
        

0.12 

qpyruvate 
        

0.12 

qsuccinate 
        

<0.1 

 



 

 

 
 

Figure S.2. Flow diagram of the genetic algorithm. This algorithm uses and elitism step. 

 

 

Table S1. Coefficients of the biomass pseudoreaction in the three GSMM of yeast. The Yeast 

and ecYeast difference for the ecYeast_batch is part of the rescaling process when protein 

pool is included. Water is part of the precursors but its not listed, its coefficient is equimolar 

to ATP. 

 
# Biomass precursors Molecules 

types 

Yeast8 ecYeast8 ecYeast8_batch 

1 ATP ATP 55.3 55.3 56.6883 

start

initiation
!! ± #

fitness evaluation
"

#!"#$#$%&

roulette  selection  

crossover 

mutation 
!! ± #

elitism 

¿generations 
completed?

stop

No

Yes



 

 

2 C16:0 chain lipids 0.00808584 0.00808584 0.0073947 

3 C16:1 chain lipids 0.0237302 0.0237302 0.0217019 

4 C18:0 chain lipids 0.00226632 0.00226632 0.0020726 

5 C18:1 chain lipids 0.00870664 0.00870664 0.00796243 

6 1-phosphatidyl-1D-myo-inositol backbone lipids 0.0069103 0.0069103 0.00631964 

7 ergosterol lipids 0.0265829 0.0265829 0.0243107 

8 ergosterol ester backbone lipids 0.0068058 0.0068058 0.00622407 

9 fatty acid backbone lipids 0.0014801 0.0014801 0.00135359 

10 phosphatidyl-L-serine backbone lipids 0.0059508 0.0059508 0.00544215 

11 phosphatidylcholine backbone lipids 0.025783 0.025783 0.0235792 

12 phosphatidylethanolamine backbone lipids 0.0069293 0.0069293 0.00633701 

13 triglyceride backbone lipids 0.0068571 0.0068571 0.00627098 

14 Ala-tRNA(Ala) aminoacids 0.527012 0.527012 0.57284 

15 Arg-tRNA(Arg) aminoacids 0.184592 0.184592 0.200644 

16 Asn-tRNA(Asn) aminoacids 0.11682 0.11682 0.126979 

17 Asp-tRNA(Asp) aminoacids 0.341731 0.341731 0.371447 

18 Cys-tRNA(Cys) aminoacids 0.00758126 0.00758126 0.0082405 

19 Gln-tRNA(Gln) aminoacids 0.12107 0.12107 0.131598 

20 Glu-tRNA(Glu) aminoacids 0.34667 0.34667 0.376816 

21 Gly-tRNA(Gly) aminoacids 0.333575 0.333575 0.362582 

22 His-tRNA(His) aminoacids 0.0761572 0.0761572 0.0827796 

23 Ile-tRNA(Ile) aminoacids 0.22135 0.22135 0.240598 

24 Leu-tRNA(Leu) aminoacids 0.340467 0.340467 0.370073 

25 Lys-tRNA(Lys) aminoacids 0.328751 0.328751 0.357338 

26 Met-tRNA(Met) aminoacids 0.0582379 0.0582379 0.063302 

27 Phe-tRNA(Phe) aminoacids 0.153808 0.153808 0.167182 

28 Pro-tRNA(Pro) aminoacids 0.189187 0.189187 0.205638 

29 Ser-tRNA(Ser) aminoacids 0.212964 0.212964 0.231483 

30 Thr-tRNA(Thr) aminoacids 0.219857 0.219857 0.238974 

31 Trp-tRNA(Trp) aminoacids 0.0326224 0.0326224 0.0354591 

32 Tyr-tRNA(Tyr) aminoacids 0.117165 0.117165 0.127353 

33 Val-tRNA(Val) aminoacids 0.30394 0.30394 0.330369 

34 (1->3)-beta-D-glucan carbohydrates 0.748515 0.748515 0.684535 

35 (1->6)-beta-D-glucan carbohydrates 0.250092 0.250092 0.228715 

36 glycogen carbohydrates 0.361415 0.361415 0.330522 

37 mannan carbohydrates 0.71094 0.71094 0.650171 

38 trehalose carbohydrates 0.138276 0.138276 0.126456 

39 AMP RNA 0.0445348 0.0445348 0.0445348 

40 CMP RNA 0.0432762 0.0432762 0.0432762 

41 GMP RNA 0.0445348 0.0445348 0.0445348 

42 UMP RNA 0.0579921 0.0579921 0.0579921 

43 dAMP DNA 0.0036 0.0036 0.0036 



 

 

44 dCMP DNA 0.0024 0.0024 0.0024 

45 dGMP DNA 0.0024 0.0024 0.0024 

46 dTMP DNA 0.0036 0.0036 0.0036 

47 coenzyme A cofactors 0.00019 0.00019 0.00019 

48 FAD cofactors 1.00E-05 0.00001 0.00001 

49 NAD cofactors 0.00265 0.00265 0.00265 

50 NADH cofactors 0.00015 0.00015 0.00015 

51 NADP(+) cofactors 0.00057 0.00057 0.00057 

52 NADPH cofactors 0.0027 0.0027 0.0027 

53 riboflavin cofactors 0.00099 0.00099 0.00099 

54 TDP cofactors 1.20E-06 0.0000012 0.0000012 

55 THF cofactors 6.34E-05 0.0000634 0.0000634 

56 heme a cofactors 1.00E-06 0.000001 0.000001 

57 iron(2+) ions 3.04E-05 0.0000304 0.0000304 

58 potassium ions 0.00363 0.00363 0.00363 

59 sodium ions 0.00397 0.00397 0.00397 

60 sulphate ions 0.02 0.02 0.02 

61 chloride ions 0.00129 0.00129 0.00129 

62 Mn(2+) ions 0.00273 0.00273 0.00273 

63 Zn(2+) ions 0.000748 0.000748 0.000748 

64 Ca(2+) ions 0.000217 0.000217 0.000217 

65 Mg(2+) ions 0.00124254 0.00124254 0.00124254 

66 Cu2(+) ions 0.000659 0.000659 0.000659 
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