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Abstract

Genome scale metabolic models (GSMM) akg common td exploration of metabolic

calculatid erved that in some ranges of growth rate, the biomass mass composition

impacts the distribution.

Introduction

Flux balance analysis is widely used for predicting metabolic fluxes using genomes scale
metabolic models. It relies on linear programming where the restrictions of the linear

optimization model are the mass balances for the internal metabolites and the exchange fluxes



are the rates of the external metabolites crossing the cellular barrier. The matrix formulation
of the linear constrains renders what is the so called the stoichiometric matrix; a sparse matrix
where non-zero elements are the stoichiometric coefficients from the reactions present in the
metabolism. This constrain-based modelling has been explored whit different approaches,
some of them are focused in the objective using quadratic programming, bilevel o
multiobjective formulations. Other approaches worked in the restrictions to include more
information and restrict the space solution, such a regulatory informati@meor enzymatic

restrictions. In FBA the mathematical formulation of the optimization p 3@ key aspect

which is the formulation of the biomass reaction. This is not a

optimization that is inspired on natural selection. It mimics the process of the genetic

combination among individuals within a population and the selection of the best genotypes
that ensure the survival (Mirjalili, 2019b) . Many engineering discilines have make use the
problems terms of mathematical modelling of biological process, it hase been used for the

parameter stimatiation of



Methodology

Metabolic models of yeast
To evaluate flux distribution and growth rate calculations, three version of the genome scale

metabolic model of yeast were used. The Yeast8 metabolic model (Lu et g 019), and two

derivates of this model when enzyme restrictions are imposed. Ong

constrain (ecYeast8) and the other one with protein pool constraia

pressed as the sum of the precursors in molar proportions

rate (flux) as:

Ugrowth:  Li=1YiBi = biomass (1

Where y; are the molar coefficients of the biomass precursors B;; in the biomass equation the
precursors are grouped in lipids, carbohydrates, DNA, RNA, cofactors, ions and the energetic
requirement as ATP. The growth rate (Vg,ower) 18 part of optimization problems in the FBA

approach:



max/min Z = Vgrowtn 2)

M
j=1

Vi = Vj uptake

a<vi<p. af €R

In total the biomass pseudoreaction formulated for the yeast
coefficients. ATP and water are equimolar, as wel
Deoxyadenosine monophosphate (1AMP) and deg
equimolar, similarly, deoxyguanosine monophosp MP) and deoxycytidine

monophosphate (dACMP) are in equimolar pr.

Genetic algorithm

The genetic algorithm c

the basig’process initiation, selection, crossover, mutation

a=vy;, + e*y; (3)
b=y —exy (4 4)
Yinew = @+ (b —a) xrand()| (5)

Where &, is the variation of the coefficient of the biomass precursor. The variation, up or

down, is relative to the values of the coefficients in the genome scale metabolic model used.



Initially, all the biomass coefficients had the same coefficient of variation, after performing
the first simulations and evaluate the results, it was necessary to differentiate this for ATP
and the rest of the molecules, as the values of the coefficients after running the genetic

algorithm were too high for ATP.

The fitness function is evaluated with the growth rate calculated using FBA (upp4) and the

experimental value (i,xp) in the follow expression:

fitness function = !

(6)

|ﬂexp_ﬂFBA|

The parameters of genetic algorithm are in Tabl adju to have the final

convergence, see supplementary data for the evaluatiori$

Table 4. Parameters of gJgorithm

M=100
MaxGen = 500
Pc=0.9
Pm=0.05
Er=0.1
e=130%

e =+ 10%




RESULTS AND DISCUSSION

Growth rate calculations

The growth rate calculations in the genome scale metabolic is presented in Table 1. It is

possible to observer the deviation

Table 1. Genome scale models evaluations at different growth rates ang 5. Only two

significant digits are taken for comparison.

model experimental values of ;.(h D] \ y

chemostat batch

010 015 02 025 M mk\gbs 0.38

Yeast8 009 010 0.11 0.16 028 034 035 039 043

ecYeast 009 010 0.11 0.28 ‘\:—;/!0.33 037 0.36
|
ecYeastbateh 009 009 0.11 015 027 032 034 035 040

4

Initially, the prediction capabilt

experimental specific ra

scenarios, 0.15, 0.20 e range of 27-47% higher, whereas for the rest,
the deviation w
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Figure 1. growth rate predictions using flux balance analysis. Experimental data from



A genetic algorithm is used to adjust the biomass pseudoreaction coefficients resembling the
changes in biomass composition as function of different growth rates and cultivation
conditions. Eight scenarios for aerobic chemostat cultivation and one scenario for an aerobic
batch cultivation were evaluated. According to genetic algorithms concepts, the size of the
chromosome was 67 genes, which corresponds to the number of precursors coefficients in

the biomass pseudo-reactions and the population size was 100 chromosomes.

The first parameter of the evaluations were the crossover rate and

algorithms are based on heuristics, which means that it is necessg
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Figure 2. The performance of the initial parameters.
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Figure 5. For the case when growth is 0.1 h"! we can see that ions and cofactors presenta a

wide variation across the generations.

In Figure 5 it is presented the progression of the solution in terms of the number of
generations when growth rate is 0.1 h'l. It is interesting to observe that ATP, lipids, amino
acids carbohydrates, RNA and DNA precursor have stable values whereas cofactors and ions

variates almost stochastically. We present 500 generations. The variation ofgthe cofactors are

not affecting the production of growth rate, wheatear this feature is relag d cofactor

accounted in the biomass models or it is the result of a biological i3

In Figure 6 we represent the case for growth rate equal 0.2 h!) was necessary

the 1500 generation to reach the convergence.
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Figure 6. Coefficient variations when growth rate is 0.2 h'l.

For the case of 0.2, the solution still not reached up to 500 generation and the value never

reached the experimental value. To achieve the convergence of the values 0.15-0.25 h-1. In



the first case we increase the glucose consumption up to 10% considering the experimental

deviation. Again, the value was not achieved it.
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Figures 7. VarQthn we increase the glucose consumption
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SUPLEMENTARY

Table S.1 Experimental value for the analysis of the flux calculations

p(h™)
chemostat batch
mmol/(gDWh™) 01 0.15 0.2 025 03 033 035 0.38 38
AA
Qglucose 1.17 150 1.70 236 3.88 6.11 7.20 13.19 15.7

20 41 52 7 95 72 69 39
oz P V Ny

qcoz 28 42 53 73 98 122 131 21 '
Qethanol 05 438 \ 18.3 ‘22.37
Qgiycerol | 0.97
Qacetate ‘L ‘h - 0.52
Qlactate 0.12
Qpyruvate ‘\ ‘V’ 0.12
(succinate \ <0.1

) 4
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Figure S.2. Rigw diagrarf@f the€ genetic algorithm. This algorithm uses and elitism step.

Table S ts of the biomass pseudoreaction in the three GSMM of yeast. The Yeast

and ecYeast @fference for the ecYeast batch is part of the rescaling process when protein

pool is included. Water is part of the precursors but its not listed, its coefficient is equimolar

to ATP.

# Biomass precursors Molecules Yeast8 ecYeast8 ecYeast8_batch

types
1 ATP ATP 55.3 55.3 56.6883



A3

2 C16:0 chain

w

C16:1 chain

C18:0 chain

C18:1 chain
1-phosphatidyl-1D-myo-inositol backbone
ergosterol

ergosterol ester backbone

O 0 N o u b

fatty acid backbone

10 phosphatidyl-L-serine backbone
11 phosphatidylcholine backbone

12 phosphatidylethanolamine backbone
13 triglyceride backbone

14 | Ala-tRNA(Ala)
15 Arg-tRNA(Arg)
16 Asn-tRNA(Asn)
17 Asp-tRNA(Asp)
18 | Cys-tRNA(Cys)
19  GIn-tRNA(GIn)
20 | Glu-tRNA(Glu)
21 Gly-tRNA(Gly)
22 | His-tRNA(His)
23 lle-tRNA(lle)

24 | Leu-tRNA(Leu)
25 | Lys-tRNA(Lys)
26 | Met-tRNA(Met)
27 | Phe-tRNA(Phe)
28 Pro-tRNA(Pro)
.

29 Ser-tRNA(Ser)
30 Thr—tRk(Thr)

Trp-tRNA(Trp) ‘ Y
/\ i Y

Val-tRNA(Val)

3‘W )-bet

(1->6)-beta-D-glucan

36 glyuv

37 mannan

lucan

38 trehalose

39 AMP
40 CMP
41 GMP
42 UMpP

43 dAMP

A “'aminoacids\'
A ‘ aminoacids

lipids 0.00808584 | 0.00808584 0.0073947
lipids 0.0237302 0.0237302 0.0217019
lipids 0.00226632  0.00226632 0.0020726
lipids 0.00870664  0.00870664 0.00796243
lipids 0.0069103 0.0069103 0.00631964
lipids 0.0265829 0.0265829 0.0243107
lipids 0.0068058 0.0068058 0.00622407
lipids 0.0014801 0.0014801 0.00135359
lipids 0.0059508 0.0059508 0.00544215
lipids 0.025783 0.025783 0.0235792
lipids 0.0069293 0.0069‘k 0633701
lipids 0.0068571 0.0068571 0.00627098
aminoacids 0.527012" 0.53‘ WZM
aminoacids 0.184592 0.184592 § 0.200644
aminoacids 0.11682“ 0.11682 ‘ 0.126979
P

aminoacids 0.341731 0.341731 0.371447
aminoacids A&.omssns“oom 0.0082405
aminoacids 0.12107 0.12107 0.131598
am‘acids v7 I 0.34667 0.376816
aminoacids 0333575 | 0.333575 0.362582
amino*s }Wz 0.0761572 0.0827796
aminoacids 0.22135 0.22135 0.240598
0.340467 0.340467 0.370073

| aminoacids 0.328751 0.328751 0.357338
0.0582379 0.0582379 0.063302

aminoacids 0.153808 0.153808 0.167182
sAminoacids 0.189187 0.189187 0.205638
aminoacids 0.212964 0.212964 0.231483
aminoacids 0.219857 0.219857 0.238974
aminoacids 0.0326224 0.0326224 0.0354591
aminoacids 0.117165 0.117165 0.127353
aminoacids 0.30394 0.30394 0.330369
carbohydrates 0.748515 0.748515 0.684535
carbohydrates 0.250092 0.250092 0.228715
carbohydrates 0.361415 0.361415 0.330522
carbohydrates 0.71094 0.71094 0.650171
carbohydrates 0.138276 0.138276 0.126456
RNA 0.0445348 0.0445348 0.0445348
RNA 0.0432762 0.0432762 0.0432762
RNA 0.0445348 0.0445348 0.0445348
RNA 0.0579921 0.0579921 0.0579921
DNA 0.0036 0.0036 0.0036

4



a4
45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

dCMP
dGMP
dTMP
coenzyme A
FAD

NAD
NADH
NADP(+)
NADPH
riboflavin
TDP

THF
heme a
iron(2+)
potassium
sodium
sulphate
chloride
Mn(2+)
Zn(2+)
Ca(2+)
Mg(2+)

Cu2(+)

DNA
DNA
DNA
cofactors
cofactors
cofactors
cofactors
cofactors
cofactors
cofactors
cofactors
cofactors
cofactors
ions
ions
ions
ions

ions

ioL

ions

0.0024 0.0024 0.0024
0.0024 0.0024 0.0024
0.0036 0.0036 0.0036
0.00019 0.00019 0.00019
1.00E-05 0.00001 0.00001
0.00265 0.00265 0.00265
0.00015 0.00015 0.00015
0.00057 0.00057 0.00057

0.0027 0.0027 0.0027

all

0.00099 0.00099 0.00099
1.20E-06 o.ood‘k 0000012
6.34E-05 0.0000634 0.0000634
1.005-06[ 0.&‘ WOm
3.04E-05 0.0000304 i 0.0000304
0.00363“ 0.00363 ‘ 0.00363

-

0.00397 0.00397 0.00397

Ak o.oz‘\ ooz 0.02

0.00129 0.00129 0.00129
V3 I 0.00273 0.00273
0.000748  0.000748 0.000748

ions \ }vﬁ7 0.000217 0.000217

ions

Q@ &

0.00124254 0.00124254 0.00124254

0.000659 0.000659 0.000659

4
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