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Application of the Kudryashov Method for Finding
Exact Solutions of the Schamel –Kawahara Equation

O. González-Gaxiola, A. León-Ramírez, G. Chacón-Acosta

Recently, motivated by the interest in the problems of nonlinear dynamics of cylindrical
shells, A. I. Zemlyanukhin et al. (Nonlinear Dyn, 98, 185–194, 2019) established the so-called
Schamel –Kawahara equation (SKE). The SKE generalizes the well-known nonlinear Schamel
equation that arises in plasma physics problems, by adding the high-order dispersive terms
from the Kawahara equation. This article presents families of new solutions to the Schamel –
Kawahara model using the Kudryashov method. By performing the symbolic computation,
we show that this method is a valuable and efficient mathematical tool for solving application
problems modeled by nonlinear partial differential equations (NPDE).

Keywords: Schamel –Kawahara equation, Kudryashov method, exact solutions, nonlinear
PDE

1. Introduction

Nonlinear partial differential equations (NPDE) provide mathematical models used in many
areas of science and engineering to explain complex phenomena of many and very diverse prob-
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lems, for example, in electromagnetic wave theory, plasma physics, fluid mechanics, field theory,
nonlinear optics, chemical kinetics, structural dynamics, stellar evolution, population dynamics,
the evolution of financial flows, control theory, etc. Finding exact solutions to NPDEs has be-
come a challenge among mathematics researchers and its applications because an exact solution
provides essential information that will help describe the behavior of the phenomena modeled
by the NPDE. As far as we know, there is no classical method that works to find exact solutions
to any kind of NPDE. Therefore, the scientific community highly appreciates the investigation
of new mathematical methodologies that provide exact solutions. Recently in [1], the author
developed a new method to solve NPDE, named the Kudryashov method (KM), and it has been
very useful to solve a great diversity of NPDEs of both integer and rational order that arise from
applications of mathematics and many other disciplines [2–14].

Several models have been proposed to study nonlinear oscillations and waves for the struc-
tural stability of shells, rods, and plates [15, 16]. Especially, the propagation in bars and cylindri-
cal shells is of interest since they are fitting for experimental research and have many and very
diverse technological and engineering applications such as those in the modeling of airplanes,
rockets, the design of gas and oil pipelines, and other similar constructions besides nanomate-
rial modeling [15–17]. Quite complicated and high-order equations or systems of equations are
used to describe such waves. For instance, nonlinear stationary solitary waves that propagate
with constant velocity without modifying their shape, the so-called solitons, are described by
the Korteweg – de Vries (KdV) equation. The KdV equation is a fourth-order equation in the
longitudinal displacement or a third-order equation in its derivative, which can be understood
as a measure of the perturbation of the system [18, 19].

Although several extensions of the KdV equation exist, Schamel proposed an equation
to study the propagation of solitary ion-acoustic waves with finite but small amplitude in
a plasma [20]. This equation presents a stronger nonlinearity, having a term of the square root of
the perturbation corresponding to a smaller width and a higher wave speed. On the other hand,
the Kawahara equation was proposed in the study of magnetoacoustic waves in a cold plasma [21].
It also appropriately describes several phenomena observed in the wave propagation dynamics in
water when the surface tension is not very large [22]. This equation contains a fifth-order disper-
sive term in addition to the third-order one in the KdV equation, which is added to balance the
nonlinear effects in the studied cases. Among the solutions, traveling waves [23, 24] and solitary
waves [25, 26] have been obtained for both equations.

Recently in [27], the propagation of longitudinal deformation waves in an inhomogeneous
cylindrical shell was studied, in the case when the dependence of tension strength on deformation
has a couple of nonlinear contributions, and in the regime when nonlinearity and dispersion are
of the same order. For this case, a new NPDE named Schamel –Kawahara equation was obtained
for such a system. It contains both the dispersive term of the fifth-order and the nonlinear term
that contains the square root of the perturbation, in addition to the standard KdV terms. As
far as we know, this new quasi-hyperbolic NPDE has only been studied in [27]. Therefore, it
is imperative to implement some suitable method to obtain new solutions. The main objective
of the present study is to obtain new solutions to the equation mentioned above by using the
well-known Kudryashov method without the need for discretization, linearization, or truncation
of the original model.
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2. Governing equation

We will consider the Schamel –Kawahara equation which is a NPDE and whose dimension-
less form is given by

ut + c1
√
uux + c2uxxx − c3uxxxxx + c4uux = 0, (2.1)

where u(x, t) is the perturbation wave function that depends on the spatial variable x and on
time t. The term ut describes the temporal evolution of the wave propagation, ci (with i =
= 1, 2, 3, 4) are nonzero constants and their meaning is as follows: c1 is the activation trapping
coefficient, c2 and c3 are dispersion coefficients, while c4 is a convection coefficient.

The c1 term corresponds to a stronger nonlinear factor than the c4 term, the standard
convective nonlinearity in the KdV equation. The Kawahara term of the fifth-order is that of
the c3 coefficient and is introduced to balance the nonlinearities induced by c4. It should be
noted that if in Eq. (2.1) c1 = 0 the equation reduces to the Kawahara equation [21], if c3 = 0
the equation is the Schamel – Korteweg – de Vries equation [19], while if c3 = 0 and c4 = 0 the
equation is reduced to the well-known Schamel equation [20]. Note that all ci are functions of
physical and geometrical quantities that depend on the particular system to be modeled [24].

3. Brief description of the Kudryashov method

The Kudryashov method originally established in [1] provides a very useful algorithm to
find exact solutions of NPDEs. Below we will briefly explain the steps of the method.

Consider the general nonlinear PDE given by

G(u, ut, ux, uxx, uxxx, . . .) = 0. (3.1)

Using the traveling wave variable change u(x, t) = u(ξ) con ξ = x− ωt, Eq. (3.1) becomes the
ODE:

F (u, −ωuξ, uξ, uξξ, uξξξ, . . .) = 0. (3.2)

To implement the Kudryashov method, it is useful to follow the following steps:
Step 1: We will assume that the exact solution of Eq. (3.2) has the form

u(ξ) =
N∑
i=0

aiQ
i(ξ) = a0 + a1Q(ξ) + · · · + aNQ

N (ξ), (3.3)

where each ai is a constant with aN 	= 0. The coefficients ai will be algebraically determined,
while the function Q is a solution of the Ricatti differential equation

dQ

dξ
= Q2 −Q, (3.4)

therefore, Q is given by

Q(ξ) =
1

1 + eξ
. (3.5)

Step 2: To find N , the upper bound of summation in (3.3), we substitute u(z) = z−p

with p > 0 in equation (3.2) and, by comparing the two (or more) terms with the smallest
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powers, we find the value of N . That is, the maximum value of p is the pole order of Eq. (3.2)
and we denote it as N .

Step 3: We consider u(ξ) given in (3.3) and the necessary derivatives uξ, uξξ, uξξξ, . . . to
substitute them in (3.2) and thus we will obtain the polynomial equation:

P [Q(ξ)] = 0. (3.6)

Step 4: We select all the terms that have the same algebraic power of Q from the polynomial
equation (3.6), set them equal to zero and obtain a system of algebraic equations with the set
of unknowns {a0, . . . , aN , ω}. We can use some calculation software, such as Mathematica, to
solve the system with the natural restrictions of the model and also considering that it is required
that aN 	= 0.

Step 5: With the results obtained in the previous step and considering Eq. (3.5) with
Eq. (3.3), we obtain the possible exact solutions of Eq. (3.2) and therefore those of Eq. (3.1).

4. The Kudryashov method for SKE equation

Let us consider Eq. (2.1). Changing the variables ξ = x − ωt, we obtain u(x, t) = u(ξ),
which:

ut = −ωuξ, ux = uξ, . . . , uxxxxx = uξξξξξ.

Substituting in Eq. (2.1), we obtain the following nonlinear ordinary differential equation:

−ωuξ + c1
√
uuξ + c2uξξξ − c3uξξξξξ + c4uuξ = 0. (4.1)

Integrating once (4.1) with respect to ξ and canceling the constants of integration, we obtain

−ωu+ 2

3
c1u

3/2 + c2uξξ − c3uξξξξ +
c4
2
u2 = 0. (4.2)

Now let us consider ω = 2c3Ω with c3 	= 0 with which Eq. (4.2) is transformed to the equation

−Ωu+
c1
2c3

u3/2 +
c4
4c3

u2 +
c2
2c3

uξξ −
1

2
uξξξξ = 0, (4.3)

which results in
−Ωu+ 1

3
αu3/2 +

1

2
βuξξ −

1

2
uξξξξ +

1

4
γu2 = 0, (4.4)

where
α =

c1
c3
, β =

c2
c3

and γ =
c4
c3
.

Finally, making the new variable change φ =
√
u with φ � 0, Eq. (4.4) turns out to be the

ordinary nonlinear differential equation:

−Ωφ2 + 1

3
αφ3 +

1

4
γφ4 + β(φξ)

2 + βφφξξ − 3(φξξ)
2 − 4φξφξξξ − φφξξξξ = 0. (4.5)

Considering that the nonlinear term of the highest algebraic power is φ4 and the highest derivative
term is φφξξξξ, we obtain the relation

4N = N + (N + 4),
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from where N = 2. Therefore,
φ(ξ) = a0 + a1Q+ a2Q

2, (4.6)

and then the solution of Eq. (2.1) will be given by

u(x, t) = u(ξ) = φ2(ξ). (4.7)

Knowing a priori that φ will be given as the polynomial in the indeterminate Q of Eq. (4.6), we
calculate its derivatives up to fourth order using the formulas previously obtained in [1] for the
case N = 2, and obtain

φξ = 2a2Q
3 + (a1 − 2a2)Q

2 − a1Q, (4.8)

φξξ = 6a2Q
4 + (a1 − 10a2)Q

3 + (4a2 − 3a1)Q
2 + a1Q, (4.9)

φξξξ = 24a2Q
5 + (6a1 − 54a2)Q

4 + (38a2 − 12a1)Q
3 + (7a1 − 8a2)Q

2 − a1Q, (4.10)

φξξξξ = 120a2Q
6 + (24a1 − 336a2)Q

5 − (60a1 − 330a2)Q
4 + (50a1 − 130a2)Q

3+

+ (16a2 − 15a1)Q
2 + a1Q.

(4.11)

Substituting Eq. (4.6) and Eqs. (4.8)–(4.11) into Eq. (4.5), we get:

Q8

(
a42γ

4
− 420a22

)
+Q7

(
a1a

3
2γ + 1320a22 − 360a1a2

)
+

+Q6

(
αa32
3

+ 10a22β + a0a
3
2γ +

3

2
a21a

2
2γ − 1510a22 − 120a0a2 + 1080a1a2 − 60a21

)
+

+Q5(αa22a1 + 12a2a1β − 18a22β + a2a
3
1γ + 3a0a

2
2a1γ + 168a21 − 24a0a1−

− 1164a2a1 + 738a22 + 336a0a2) +Q4

(
αa2a

2
1 + αa0a

2
2 + 3a21β − 21a2a1β + 8a22β + 6a0a2β +

+
a41γ

4
+ 3a0a2a

2
1γ +

3

2
a20a

2
2γ − a22Ω− 165a21 + 60a0a1 + 525a2a1 − 128a22 − 330a0a2

)
+

+Q3

(
αa31
3

+ 2αa0a2a1 − 5a21β + 2a0a1β + 9a2a1β − 10a0a2β + a0a
3
1γ + 3a20a2a1γ−

− 2a2a1Ω+ 65a21 − 50a0a1 − 81a2a1 + 130a0a2

)
+Q2

(
αa2a

2
0 + αa21a0 − 3a1a0β +

+4a2a0β + 2a21β + a2a
3
0γ +

3

2
a21a

2
0γ − 2a2a0Ω− a21Ω+ 15a1a0 − 16a2a0 − 8a21

)
+

+Q
(
αa1a

2
0 + a1a0β + a1a

3
0γ − 2a1a0Ω− a0a1

)
+
αa30
3

+
a40γ

4
− a20Ω = 0. (4.12)

Collecting the coefficients of the same power and setting them equal to zero, we obtain the system
of algebraic equations with the set of unknowns {a0, a1, a2, Ω}:

Q0 :
αa30
3

+
a40γ

4
− a20Ω = 0,

Q1 : αa1a
2
0 + a1a0β + a1a

3
0γ − 2a1a0Ω− a0a1 = 0,

Q2 : αa2a
2
0 + αa21a0 − 3a1a0β + 4a2a0β + 2a21β + a2a

3
0γ +

3

2
a21a

2
0γ−

−2a2a0Ω− a21Ω+ 15a1a0 − 16a2a0 − 8a21 = 0,
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Q3 :
αa31
3

+ 2αa0a2a1 − 5a21β + 2a0a1β + 9a2a1β − 10a0a2β + a0a
3
1γ + 3a20a2a1γ−

−2a2a1Ω+ 65a21 − 50a0a1 − 81a2a1 + 130a0a2 = 0,

Q4 : αa2a
2
1 + αa0a

2
2 + 3a21β − 21a2a1β + 8a22β + 6a0a2β +

a41γ

4
+ 3a0a2a

2
1γ +

3

2
a20a

2
2γ−

−a22Ω− 165a21 + 60a0a1 + 525a2a1 − 128a22 − 330a0a2 = 0,

Q5 : αa22a1 + 12a2a1β − 18a22β + a2a
3
1γ + 3a0a

2
2a1γ + 168a21 − 24a0a1 − 1164a2a1+

+738a22 + 336a0a2 = 0,

Q6 :
αa32
3

+ 10a22β + a0a
3
2γ +

3

2
a21a

2
2γ − 1510a22 − 120a0a2 + 1080a1a2 − 60a21 = 0,

Q7 : a1a
3
2γ + 1320a22 − 360a1a2 = 0,

Q8 :
a42γ

4
− 420a22 = 0.

Solving the system of algebraic equations above with the restriction of the method a2 	= 0,
we obtain, with the help of Mathematica software, the following families of results:

Family 1: With α = 1
2

√
15γ
7 (β − 13), β ∈ R, β 	= 13 and γ > 0:

a0 =

√
105γ(β − 13)− 14α

39γ
, a1 = 4

√
105

γ
, a2 = −4

√
105

γ
, Ω = 2(β − 4).

Using the Ansatz given by Eq. (4.6), we obtain the following traveling-wave solution of Eq. (4.5):

φ1(ξ) =

√
105γ(β − 13) − 14α

39γ
+ 4

√
105

γ

(
1

1 + eξ

)
− 4

√
105

γ

(
1

1 + eξ

)2

, (4.13)

considering that α =
c1
c3

, β =
c2
c3

, γ =
c4
c3

, ω = 2c3Ω and u = φ2, we obtain the following solution
for Eq. (2.1):

u1(x, t) =

[
A1 +B1

(
1

1 + e(x−ω1t)

)
−B1

(
1

1 + e(x−ω1t)

)2
]2

=

=

[
A1 + (2A1 +B1)e

(x−ω1t) +A1e
2(x−ω1t)

(1 + e(x−ω1t))2

]2
, (4.14)

where

A1 =

√
105c4
c3

(
c2−13c3

c3

)
− 14c1

c3
39c4
c3

, B1 = 4

√
105c3
c4

and ω1 = 4(c2 − 4c3) with c3c4 > 0.

Family 2: With α = 1
2

√
15γ
7 (β − 13), β ∈ R, β 	= 13 and γ > 0:

a0 = 0, a1 = 4

√
105

γ
, a2 = −4

√
105

γ
, Ω = 2(β − 4).
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Using the Ansatz given by Eq. (4.6), we obtain the following traveling-wave solution of Eq. (4.5):

φ2(ξ) = 4

√
105

γ

(
1

1 + eξ

)
− 4

√
105

γ

(
1

1 + eξ

)2

, (4.15)

from which finally the corresponding solution for Eq. (2.1) is

u2(x, t) =

[
B2

(
1

1 + e(x−ω2t)

)
−B2

(
1

1 + e(x−ω2t)

)2
]2

=

[
B2e

(x−ω2t)

(1 + e(x−ω2t))2

]2
, (4.16)

where

B2 = 4

√
105c3
c4

and ω2 = 4(c2 − 4c3) with c3c4 > 0.

Family 3: With α = −1
2

√
15γ
7 (β − 13), β ∈ R, β 	= 13 and γ > 0:

a0 = 0, a1 = −4
√

105

γ
, a2 = 4

√
105

γ
, Ω = 2(β − 4).

Using the Ansatz given by Eq. (4.6), we obtain the following traveling-wave solution of Eq. (4.5):

φ3(ξ) = −4
√

105

γ

(
1

1 + eξ

)
+ 4

√
105

γ

(
1

1 + eξ

)2

. (4.17)

from the above, the corresponding solution for Eq. (2.1) is

u3(x, t) =

[
−B3

(
1

1 + e(x−ω3t)

)
+B3

(
1

1 + e(x−ω3t)

)2
]2

=

[
−B3e

(x−ω3t)

(1 + e(x−ω3t))2

]2
, (4.18)

where

B3 = 4

√
105c3
c4

and ω3 = 4(c2 − 4c3) with c3c4 > 0.

Family 4: With α = α, β = 1
15

[
195 + 2α

√
105
γ

]
and γ > 0:

a0 = 0, a1 = 4

√
105

γ
, a2 = −4

√
105

γ
, Ω = 7β − 73− 2α

3

√
105

γ
.

Using the Ansatz given by Eq. (4.6), we obtain the following traveling-wave solution of Eq. (4.5):

φ4(ξ) = 4

√
105

γ

(
1

1 + eξ

)
− 4

√
105

γ

(
1

1 + eξ

)2

, (4.19)

from the above, the corresponding solution for Eq. (2.1) is

u4(x, t) =

[
B4

(
1

1 + e(x−ω4t)

)
−B4

(
1

1 + e(x−ω4t)

)2
]2

=

[
B4e

(x−ω4t)

(1 + e(x−ω4t))2

]2
, (4.20)
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where

B4 = 4

√
105c3
c4

and ω4 = 36c3 −
32

15
c1

√
105c3
c4

with c3c4 > 0.

Family 5: With α = α, β = 1
15

[
195− 2α

√
105
γ

]
and γ > 0:

a0 = 0, a1 = −4
√

105

γ
, a2 = 4

√
105

γ
, Ω = 7β − 73 +

2α

3

√
105

γ
.

Using the Ansatz given by Eq. (4.6), we obtain the following traveling-wave solution of Eq. (4.5):

φ5(ξ) = −4
√

105

γ

(
1

1 + eξ

)
+ 4

√
105

γ

(
1

1 + eξ

)2

, (4.21)

from the above, the corresponding solution for Eq. (2.1) is

u5(x, t) =

[
−B5

(
1

1 + e(x−ω5t)

)
+B5

(
1

1 + e(x−ω5t)

)2
]2

=

[
−B5e

(x−ω5t)

(1 + e(x−ω5t))2

]2
, (4.22)

where

B5 = 4

√
105c3
c4

and ω5 = 36c3 +
32

15
c1

√
105c3
c4

with c3c4 > 0.

Family 6: With γ 	= 0 and β = 13:

a0 = 0, a1 = −4
√

105

γ
, a2 = 4

√
105

γ
, Ω = 18.

Using the Ansatz given by Eq. (4.6), we obtain the following traveling-wave solution of Eq. (4.5):

φ6(ξ) = −4
√

105

γ

(
1

1 + eξ

)
+ 4

√
105

γ

(
1

1 + eξ

)2

, (4.23)

from which finally the corresponding solution for Eq. (2.1) is

u6(x, t) =

[
−B6

(
1

1 + e(x−ω6t)

)
+B6

(
1

1 + e(x−ω6t)

)2
]2

=

[
−B6e

(x−ω6t)

(1 + e(x−ω6t))2

]2
, (4.24)

where

B6 = 4

√
105c3
c4

and ω6 = 36c3 with c3c4 > 0.

5. Graphical presentation of solutions

In this section we will show graphically some solutions of Eq. (2.1) for different values of the
coefficients c1, c2, c3 and c4 as well as the corresponding 2D plots for some values of t illustrating
how the traveling wave evolves.
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Fig. 1. Using Eq. (4.14): Solitary wave solutions for Eq. (2.1) with c1 = 2.0, c2 = −2.0, c3 = 1.5
and c4 = 3.0 (left). 2D plot of the exact solution u1 for t = 0.0, t = 0.1, t = 0.2 and t = 0.3 (right)

Fig. 2. Using Eq. (4.16): Solitary wave solutions for Eq. (2.1) with c1 = 1.3, c2 = 2.1, c3 = −3.1
and c4 = −10.0 (left). 2D plot of the exact solution u2 for t = 0.0, t = 0.1, t = 0.2 and t = 0.3 (right)

(a) For family 1: Let us consider Eq. (2.1) for the values of the coefficients c1 = 2.0, c2 =
= −2.0, c3 = 1.5 and c4 = 3.0. Figure 1 shows the 3D and 2D W-shaped soliton solutions
of Eq. (4.14).

(b) For family 2: Let us consider Eq. (2.1) for the values of the coefficients c1 = 1.3, c2 = 2.1,
c3 = −3.1 and c4 = −10.0. Figure 2 shows the 3D and 2D bright soliton solutions of
Eq. (4.16).

(c) For family 3: Let us consider Eq. (2.1) for the values of the coefficients c1 = 2.5, c2 = 3.5,
c3 = 0.2 and c4 = 0.5. Figure 3 shows the 3D and 2D bright soliton solutions of Eq. (4.18).

(d) For family 4: Let us consider Eq. (2.1) for the values of the coefficients c1 = 4.8, c2 = 1.8,
c3 = 3.1 and c4 = 5.5. Figure 4 shows the 3D and 2D bright soliton solutions of Eq. (4.20).

(e) For family 5: Let us consider Eq. (2.1) for the values of the coefficients c1 = 0.01, c2 =
= 1.4, c3 = −0.2 and c4 = −6.2. Figure 5 shows the 3D and 2D bright soliton solutions of
Eq. (4.22).
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Fig. 3. Using Eq. (4.18): Solitary wave solutions for Eq. (2.1) with c1 = 2.5, c2 = 3.5, c3 = 0.2
and c4 = 0.5 (left). 2D plot of the exact solution u3 for t = 0.0, t = 0.1, t = 0.2 and t = 0.3 (right)

Fig. 4. Using Eq. (4.20): Solitary wave solutions for Eq. (2.1) with c1 = 4.8, c2 = 1.8, c3 = 3.1
and c4 = 5.5 (left). 2D plot of the exact solution u4 for t = 0.0, t = 0.1, t = 0.2 and t = 0.3 (right)

Fig. 5. Using Eq. (4.22): Solitary wave solutions for Eq. (2.1) with c1 = 0.01, c2 = 1.4, c3 = −0.2
and c4 = −6.2 (left). 2D plot of the exact solution u5 for t = 0.0, t = 0.1, t = 0.2 and t = 0.3 (right)
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Fig. 6. Using Eq. (4.24): Solitary wave solutions for Eq. (2.1) with c1 = 3.9, c2 = 4.4, c3 = −0.3
and c4 = −7.5 (left). 2D plot of the exact solution u6 for t = 0.0, t = 0.1, t = 0.2, t = 0.3 and t = 0.4
(right)

(f) For family 6: Let us consider Eq. (2.1) for the values of the coefficients c1 = 3.9, c2 =
= 4.4, c3 = −0.3 and c4 = −7.5. Figure 6 shows the 3D and 2D bright soliton solutions of
Eq. (4.24).

From the above figures, one can see that the solutions obtained possess the W-shaped
soliton solutions and the bright soliton solutions of Eq. (2.1). In addition, these figures show the
behavior of longitudinal wave propagation in the cylindrical shell which give some perspective
how the behavior solutions are produced.

Remark 1. The exact solutions (4.16), (4.18), (4.20), (4.22) and (4.24), which we obtained for the
Schamel – Kawahara equation, have the same traveling wave structure as those found by the geometric
series method using Padé approximations in [27].

6. Conclusions

Many and very diverse problems in engineering and science require the study of waves
and oscillations to analyze structural stability. Recently, it was shown that the propagation of
longitudinal waves in deformable media with axial symmetry follows the Schamel –Kawahara
equation. The SKE is a generalization of the KdV equation that contains a nonlinear term
associated with the Schamel equation and a dispersive high-order term related to the Kawahara
equation, which was used to model perturbations in cylindrical shells [28]. Therefore, it is
imperative to have solutions to this equation for this kind of propagation.

In this paper, a new set of families of traveling wave solutions of the Schamel –Kawahara
equation has been obtained using the Kudryashov method. The Kudryashov method is a powerful
tool for dealing with dispersive higher-order NPDEs and is easy to implement. It can be applied
to a wide variety of NPDEs arising in different branches of science and engineering to explore
complex nonlinear systems analytically. It provides a simple algorithm to find exact solitary
wave solutions by reducing the problem to an algebraic one.

The six families were found to show similar behaviors. Five solutions gave bright soliton-
like solutions, and one a W-type wave, for specific values of the parameters. These are shown
in Figs. 1–6. In general, for each problem, the parameters will depend on the geometrical and
physical characteristics of the system, such as thickness, length, rib spacing, Young’s modulus,
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moments of inertia, etc. Hence, one could look for the values of a specific system and see which
of these families provide real solutions to the problem.
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