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a b s t r a c t

In this work, we present a diffusive predator–prey model with a finite interaction scale between species
and an external flow. The system is confined to a two-dimensional domain with one coordinate larger
than another, which allows us to use the one-dimensional projection of the diffusion operator, known
as the Fick–Jacobs projection, here with an external force. Within this approach, we obtain analytical
results for an exponential-shaped channel showing that patterns can emerge through the diffusion-
driven instability mechanism. We show that the range of unstable modes where patterns can appear
is modified by the species interaction’s spatial scale and an effective advection term that includes
external velocity and the shape parameter that characterizes the channel-like region.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Population ecology deals with the increases, decreases, and
luctuations of populations. In this sense, Lotka–Volterra
quations focus on studying predator–prey competing species
elations, where spatial variation is necessary to understand
omplete ecological behavior. These displacements might occur
ue to diffusive mechanisms when the organisms are embedded
n a substrate or caused by their own propagation [1]. Com-
etition between individuals establishes mechanisms to control
rowth caused by limited common resources. In complex eco-
ogical systems, so-called public goods interactions appear when
pposing interests in the involved species are present. One way
o study them is by imposing spatial limits on the evolution
f the population [2,3]. Spatial dynamics influences in inter-
pecies cooperation according to various emerging patterns [4].
t has been shown that in a population of individuals that diffuse,
eproduce and compete for resources, non-local competitive in-
eractions play a fundamental role in the spatial organization of
uch population. The non-local interaction has been effectively
odeled by an influence function and a convolution operation in

he reactive term, which leads to pattern formation [5,6].
The spatial relations between involved individuals can influ-

nce the formation of patterns under certain circumstances and
ecome important when describing their behavior, which has

∗ Corresponding author.
E-mail address: mayra.nunez@itam.mx (M. Núñez-López).
ttps://doi.org/10.1016/j.physd.2022.133194
167-2789/© 2022 Elsevier B.V. All rights reserved.
been modeled through reaction–diffusion equations. The forma-
tion of patterns can reproduce the evolution of systems such
as bacterial colonies [7], the concentration of plankton [8], the
development of vegetation [9] or the spatial distribution of prey
and predators [10,11], etc. In the latter case, Lotka–Volterra kind
systems have been shown to generate patterns with the Turing
mechanism. Diffusion-driven instabilities in population dynamics
have been studied thoroughly. For instance, Bartumeus et al. [12]
showed that Turing instability might be produced by interfer-
ence among predators, by constructing a ratio dependent func-
tional response, using a DeAngelis modified model [13]. McGehee
and Peacock-López [14] and McGehee et al. [15] use a modi-
fied Bazykin model [13], where an interference term between
predators produces diffusion-driven instability. The instability
also appears through quadratic interaction terms, adequately de-
limited by Verhulst type saturations [1], or in a type II Holling
functional response [16]. On the other hand, there are several
models where prey-taxis allows predators to search more actively
for prey and can generate different spatial patterns from those
formed in models without prey-taxis [17–19]. Prey-taxis tends to
reduce the likelihood of pattern formation in spatial predator–
prey systems or even annihilate the spatial patterns [20], but
other kind of taxis may have the opposite effect on pattern
formation [21]. Other works investigate pattern formation with
cross-diffusion that gives rise to a wide variety of patterns [22].
Many experiments of interest to chemists where cross-diffusion
effects can be significant demonstrate that relatively small values
of cross-diffusion parameters can lead to spatio-temporal pat-
tern formation as long as the kinetics are sufficiently non-linear

[23,24].

https://doi.org/10.1016/j.physd.2022.133194
http://www.elsevier.com/locate/physd
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Another non-linear and non-local interaction terms between
species are characterized by a spatial scale that controls the
interaction between prey and predators. This model is proposed
since predation depends on the probability of finding a prey, so
an integral over the action area appears in the reactive term.
This term considers the influence of prey movements on predator
behavior [10,11]. Given this kind of nonlinear spatial dependent
terms, it is natural to think that if there are spatial limitations,
they will also influence the system’s behavior.

The influence of the boundaries has been studied in different
works. In [25,26], both confinement and other effects such as
the growth of the domain where the process takes place can
affect patterns. The effects of boundary conditions and the cou-
pling of Turing systems can generate patterns not shown by
the standard model. Indeed, growth may be a mechanism to
increase the robustness of pattern formation. In [27], one of the
boundaries represents the predators’ trajectories and the survival
probability of the prey changes depending on the boundary’s
shape. In Ref. [28] a numerical study of the spatial correlations
between predators and prey was carried out, observing the re-
sponse of prey to the presence and actions of a predator in
a limited space. Therefore, the prey’s escape is influenced not
only by the predator’s movement but also by the confinement,
although a thorough analysis is needed. There are some predator–
prey systems where organisms inhabit environments such as
streams and rivers, where there is naturally a preferential di-
rection associated with a constant flow that is fundamental for
populations’ behavior. These systems have been modeled mainly
as one-dimensional [29]. However, as small perturbations in the
flows put these populations at risk, it would be interesting to
analyze how the boundaries’ variation affects this flux.

This work presents a prey–predator model within an external
flow in a two-dimensional physical space projected in one effec-
tive dimension through the Fick–Jacobs projection method [30].
Unlike other works, in this paper, we propose to analytically
study the influence of both an external advective velocity and
the geometric characteristics of the domain in the formation of
patterns modeled with a reaction–diffusion system with a spatial
interaction scale in the reactive terms. This approach had not
previously been studied to the best of the authors’ knowledge.
The analytical results show that the range of unstable modes,
where patterns can arise, is influenced by the interaction distance
between species, the external velocity, and the shape parameter
indicating channel geometry variations.

The structure of the paper is as follows: In Section 2, we
present the dispersion relation of the prey–predator model with
spatial interaction in one and two-dimensional physical spaces. In
Section 3, we consider the projection method to one dimension of
the prey–predator model by introducing the Fick–Jacobs–Zwanzig
(FJZ) differential operator with a position-dependent and a con-
stant diffusion coefficient, as well as an external force inducing a
velocity in the longitudinal direction. In this section, we accom-
plished the stability analysis of the system. We chose a channel
with an exponential profile to obtain analytical results and study
the parameter space of this system through the corresponding
dispersion relation. We found that the range of untestable modes,
where the patterns can arise, is modified due to advective terms,
both external and geometrical-induced. Finally, in Section 4, we
discuss and summarize our results.

2. Prey–predator model with spatial interaction

Let us consider a model characterized by a couple of equa-
tions, one for the prey N(x, t) and one for the predator P(x, t).
They describe diffusion in physical space and the strength of the
interaction in the nonlinear term is a function of individuals’
2

proximity [31]. These reaction–diffusion models with spatial’s
scale interaction have been widely applied to model competi-
tion of species coevolution in community ecology. We introduce
two different interactions scales L1 ̸= L2 because we consider
different effective ranges of interaction (the region where prey
and predators interact may have different relevance to predator
growth and prey death). This has an important role in pattern
formation [10,32]

∂N(x, t)
∂t

= DN
∂2N(x, t)

∂x2
+ rN(x, t)

−αN(x, t)
∫ x+L1

x−L1

P(s, t)ds, (1)

∂P(x, t)
∂t

= DP
∂2P(x, t)

∂x2
− mP(x, t)

+βP(x, t)
∫ x+L2

x−L2

N(s, t)ds (2)

Predators consume the preys with an intrinsic rate α and
eproduce with rate β , r is the preys’ growth rate, and predators
re assumed to die with rate m spontaneously. DN and DP are the
onstant diffusion coefficients of prey and predators, respectively.
The one-dimensional case was deeply analyzed in [10] to

nvestigate the existence of patterns with spatial structure con-
idering small harmonic perturbations for preys and predators,
N eλt+ikx, AP eλt+ikx respectively. According to [10], the dispersion
elation is given by

(K ) = −K 2
+

√
rmL21
DK

√
− sin2 K cos K . (3)

where DN = DP = D, L2 = 2L1, K = kL1 and λ̂ = λ
L21
D .

In [11] present some results related to the two-dimensional
physical space with small harmonic perturbations AN exp[λt +

k̄ · x̄], AP exp[λt + ik̄ · x̄], where x̄ = (x, y), and k̄ = (kx, ky) is a
two-dimensional wave vector of modulus |k̄| = k, the dispersion
relation is given by

λ(K ) = −K 2
+

√
rmR2

DK

√
−J1(K )J1(2K ) (4)

here J1 is the first-order Bessel function, DN = DP = D, R1 =

R2 = 2R, K = kR, λ̂ = λ R2
D . In both dispersion relationships the

objective is to found for some K where Re[̂λ(K )] > 0 so spatial
atterns can emerge i.e. is possible to record spatial correlations
etween prey and predators in nature. The presence of structures
ersists independently of the space dimension where the model
an be implemented. For instance, in Ref. [11] it was shown that
or a dimension greater than two, a larger difference between
ffective ranges of interaction promotes cluster formation.
Lotka–Volterra model characterized by a finite range prey–

redator interaction in a two-dimensional space is the most ap-
ropriate for describing real ecosystems. The 3D case is not typ-
cal to model an ecosystem. Terrestrial individuals and even ma-
ine species tend to remain within a small thickness layer com-
ared to their horizontal movements [11].
In the next section, we consider the projection of this model

o one effective dimension of the prey–predator model.

. Projection to one effective dimension

Let us consider a reaction–diffusion–advection model for the
rey’s N(x, y, t) and predator’s P(x, y, t) densities, which can
ove in two-dimensional space [11]. Here we consider isotropic
nd constant diffusion coefficients, different for each species, i.e,
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Nx ̸= DNy ̸= DPx ̸= DPy , and an advective flow in the longitudinal
irection with velocity v,

∂N
∂t

= DNx

∂2N
∂x2

+ DNy

∂2N
∂y2

+ v
∂N
∂x

+ rN

− αN
∫∫

|x′−x|∈Ω1

P(x′, y′, t)dx′dy′, (5)

∂P
∂t

= DPx
∂2P
∂x2

+ DPy
∂2P
∂y2

+ v
∂P
∂x

− mP

+ βP
∫∫

|x′−x|∈Ω2

N(x′, y′, t)dx′dy′, (6)

where constant rates are as in Eqs. (1), (2), and x = (x, y),
x′

− x| is the distance calculated with the Euclidean norm, and
Ω1, Ω2 are the action regions of the corresponding predator
r prey, such that the integrals count the number of prey or
redators with which they can interact. Usually, one considers
ixed radius neighborhoods. Instead, we consider that the two-
imensional region where the entire process occurs is like a
hannel, i.e., one of the directions is much larger than the other
o that the diffusion in the transverse direction will relax much
aster than in the longitudinal direction, which will allow the
se of an effective equation along the longitudinal coordinate. To
arry out this procedure, it is necessary to project Eqs. (5) and (6)
n the longitudinal coordinate x by integrating on the transverse
oordinate y. Let us first introduce the marginal densities

(x) =

∫ h2(x)

h1(x)
N(x, y, t)dy, (7)

p(x) =

∫ h2(x)

h1(x)
P(x, y, t)dy, (8)

where h1(x) and h2(x) are the channel-like region’s upper and
lower boundaries, which depend on the longitudinal coordinate.
In Eqs. (5) and (6), the time derivative on the left-hand side
and the fourth term on the right-hand side can be integrated
directly. In the particular case with no advection, i.e. v = 0, we
apply the fundamental theorem of calculus and Leibniz’s rule to
introduce the marginal densities for the terms with derivatives
on the right-hand side of Eqs. (5) and (6). Furthermore, we must
impose zero flux conditions at the transverse boundaries. These
conditions make it possible to relate both the derivatives and the
diffusion coefficients in different directions [33,34]. Under these
assumptions, it is possible to rewrite the second-order derivatives
on the right-hand side of (5) and (6), which correspond to the
Laplacian operator, as the so-called Fick–Jacobs operator, which
is as follows

L̂FJ (·) = Di
∂

∂x

[
w(x)

∂

∂x

(
·

w

)]
, (9)

here w(x) := h2(x)−h1(x) is the width function. Since Zwanzig’s
riginal work [34], it has been proposed that the diffusion co-
fficient in this approach may depend on the longitudinal coor-
inate [35]. The Kalinay and Percus projection method [36,37]
rovides a systematic way of finding position-dependent correc-
ions of the diffusion coefficient. In this method, a perturbation
eries that consists of operators acting on the density is proposed.
he diffusivity ratio is the perturbation parameter, i.e., it is as-
umed that the transverse diffusion is faster than the longitudinal
ne. This assumption is made because, as the transverse distance
s much shorter, the particles will travel more frequently in that
irection, facilitating the faster equilibration of that component.
owever, the ratio value is not a strict requirement since the se-
ies has been seen to converge even if the ratio is one [33,36,37].
n the other hand, employing differential geometry methods to
arameterize the channel’s shape, more general coefficients that
 t

3

depend on the midline’s coordinate have also been found [38,39].
Therefore, the operator in (9) can be extended as follows,

L̂FJZi (·) =
∂

∂x

[
Di(x)w(x)

∂

∂x

(
·

w

)]
. (10)

with Di(x) the position dependent diffusion coefficient of the ith
species.

Indeed, the dependence of the effective diffusion coefficient
on x is specifically through w′(x), and since Zwanwig [34], the
channel width is asked to be slowly varying functions of x. Nev-
ertheless, the validity range of this approximation has been ex-
plored in several works, both from an analytical and a numerical
perspective [40–43]. They show that the constraint w′

≪ 1 can be
weakened to w′

≤ 1, [43]. This approach has also been extended
when additional effects such as hydrodynamic terms [44,45] or
external fields causing advective currents [46,47], and even if the
diffusion takes place on a curved surface [48]. Reactive terms
have also been considered, [49]. Moreover, in Ref. [30] patterns
formation in systems with reactive terms that occur in channel-
like geometries was studied, obtaining that the Turing instability
conditions are modified due to the channel’s geometry. Also, in
Ref. [30], it is seen that the effect of D(x) can be absorbed in a
rescaling of the longitudinal coordinate.

In the case of external fields it has been shown that, pro-
jecting the corresponding Smoluchowski equation, the lowest
order in the method corresponds to the Fick–Jacobs equation
with the operator (9), but with a width function modified by the
corresponding external potential U(x, y), as follows

L̂FJA(·) = Di
∂

∂x

[
A(x)

∂

∂x

(
·

A

)]
, (11)

here

(x) =

∫ h2(x)

h1(x)
e−βU(x,y)dy, (12)

with β = 1/kT . For higher orders, the Kalinay and Percus method
leads to a x dependent diffusion coefficient that is a function
of both the derivatives of the width function and complicated
combinations of the external potential [46,47]. It is not difficult
to see that the potential U(x) = vx/Diβ produces an advective
flow in the longitudinal direction with constant velocity v, which
is just what is required for the analysis of the system (5)–(6).
In such a case, the generalized width can be written as A(x) =

w(x) exp
[
−

vx
Di

]
. The ratio between the advection velocity and

the diffusion coefficient works as a decrease rate of the width
function.

In addition to all the previous considerations, we must make
additional assumptions to deal with the nonlinear terms that
contain the integrals in (5) and (6). Let us first consider the
case in which the regions Ωi are rectangles with a fixed base
length Li, with i = 1, 2. but whose heights can extend to the
hannel-like region’s boundaries therefore vary as one advances
n the longitudinal direction, i.e. h1(x) ≤ y′

≤ h2(x). Therefore,
he integrals over y′ in (5)–(6) immediately give the marginal
ensities. Hence, the system becomes as follows

∂n
∂t

= L̂FJAn (n) + rn − αn
∫ x+L1

x−L1

p(x′, t)dx′, (13)

∂p
∂t

= L̂FJAp (p) − mp + βp
∫ x+L2

x−L2

n(x′, t)dx′, (14)

or constant diffusion coefficients. The system (13)–(14) is very
imilar to the one-dimensional system studied in Ref. [10], but
ith the Fick–Jacobs operator with external force, instead of just
he second derivative.
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Now, let us consider the system (13)–(14), but written as
follows
∂n
∂t

= DN
∂2n
∂x2

− DN n
∂2 ln A
∂x2

− DN
∂ ln A
∂x

∂n
∂x

+ rn

− αn
∫ x+L1

x−L1

p(x′, t)dx′, (15)

∂p
∂t

= DP
∂2p
∂x2

− DP p
∂2 ln A
∂x2

− DP
∂ ln A
∂x

∂p
∂x

− mp

+ βp
∫ x+L2

x−L2

n(x′, t)dx′, (16)

here the Fick–Jacobs operator with external potential was ex-
anded in terms of A. The relation between derivatives of the
eneralized and genuine width functions is straightforward

∂ ln A
∂x

=
∂ lnw

∂x
−

v

Di
,

∂2 ln A
∂x2

=
∂2 lnw

∂x2
. (17)

t is worth mentioning that the right hand side of Eq. (17) is
he balance between the entropic and the external forces. The
tationary case is identical to the one-dimensional case [10] since
he entropic potential couples only to the diffusive term, which
anishes in such case. Therefore n̄ =

m
2βL2

, and p̄ =
r

2αL1
. Then

e consider small perturbations around the stationary state as
ollows

(x, t) = n̄ + an eλtu(x), p(x, t) = p̄ + ap eλtu(x), (18)

where we consider the exponential behavior in time at rate λ, to
perform the stability analysis, and u(x) for the spatial perturbation
term. By substituting the perturbed solution in Eqs. (15)–(16), the
reactive part of the equations is reduced to the one-dimensional
case by keeping only the terms linear in the perturbation. How-
ever, there are terms induced by the entropic potential that must
be analyzed. As already mentioned, Fick–Jacobs approximation is
valid as long as the channel’s shape varies slowly, i.e., w′

≪ 1.
We observe that the term of the second derivative is of a higher
order because it includes terms w′′ and (w′)2, so we can neglect
that term. With this Eqs. (15)–(16) reduce to

λanu = DNan
∂2u
∂x2

− DNan
∂ ln A
∂x

∂u
∂x

− αn̄ap

∫ x+L1

x−L1

u(x′)dx′, (19)

λapu = DPap
∂2u
∂x2

− DPap
∂ ln A
∂x

∂u
∂x

+ βp̄an

∫ x+L2

x−L2

u(x′)dx′, (20)

sually, one considers a harmonic perturbation u(x) = eikx, that
solves the Helmholtz equation. Nevertheless, for channels, the
boundary’s geometry modifies the equation, and the eigenfunc-
tions of the modified operator are needed [30]. The problem
with this method is the nonlinear integral term in Eqs. (15)–(16)
which is not necessarily proportional to the function u(x), and
he stability analysis may become involved. Instead, we make the
tability analysis in Fourier space by transforming Eqs. (19) and
20). Therefore, the transform is as follows

anû = −k2anDN û −
DN

2π
an f̂ ∗ ĝ − αn̄ap

2 sin kL1
k

û, (21)

apû = −k2apDP û −
DP

2π
ap f̂ ∗ ĝ + βp̄an

2 sin kL2
k

û, (22)

here the û is the Fourier transform of u and the convolution is
iven by

ˆ ∗ ĝ =

∫
f̂ (k − k′)ĝ(k′)dk′, (23)
4

Fig. 1. Exponential funnel-like channel with different values for the shape
parameter: γ0 = 1 (blue), γ0 = 0.2 (red), γ0 = 0 (black dotted), γ0 = −0.12
green).

ith

f̂ =
1

√
2π

∫
e−ikx ∂ ln A

∂x
dx, (24)

ĝ =
1

√
2π

∫
e−ikx ∂u

∂x
dx = ikû. (25)

e see that Eqs. (21) and (22) are modified with respect to case
D in Ref. [10] by the term that involves the Fourier transform of
he generalized entropic potential.

In order to obtain analytical expressions for convolution in
q. (23) we choose a channel with an exponential profile that has
funnel shape and whose width function is w(x) = A0 e−γ0x. We
an see a plot of this channel in Fig. 1. From Eq. (17), it can be
een that the kernel of f̂ , for this channel is a constant

∂ ln A
∂x

=
∂

∂x
ln
(
A0e−γ0x

)
−

v

Di
= −γ0 −

v

Di
≡ −γ . (26)

The Fourier transform of the derivative of the generalized
ntropic potential for this channel is f̂ = −iγ

√
2πδ(k). So, from

(25) the convolution reduces to f̂ ∗ (ikû) =
√
2πγ kû. For other

idth functions, for example, for periodic functions, either the
onvolution might not be proportional to û, or the integral in
23) would have to be obtained numerically; this will be done
lsewhere. Since our goal is to analytically study the effects of the
nteraction scale, advective flow, and channel geometry, we limit
urselves to studying the funnel-shaped channel. Further effects
f periodic channels in reaction–diffusion systems with constant
eaction rates have already been studied within the Fick–Jacobs
pproximation in [50].

.1. Range of unstable modes of the dispersion relation

The system for stability analysis for this channel is

λ + k2DN + kDNγ
)
an +

mα

β

2 sin kL1
kL2

ap = 0, (27)(
λ + k2DP + kDPγ

)
ap −

rβ
α

2 sin kL2
kL1

an = 0. (28)

The characteristic polynomial is calculated when the determinant
of the system equals zero, and is given by

λ2
+ (DN + DP )(k2 + γ k)λ + h(k) = 0. (29)

here

(k) = DNDPk4 + 2γDNDPk3 + γ 2DNDPk2 (30)

rm sin(kL1) sin(kL2)

k2L1L2
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Fig. 2. Dispersion relation λ̂(K ) for prey–predator model for Γ = 0 and µ = 15
rbitrarily fixed. (a) Corresponds to d = 1 and ℓ = 2, 1.875, 1.8. (b) For the
alues ℓ = 2 and d = 1, 1.44, 1.8.

he corresponding solution to (29) is

=
1
2
(−(DN + DP )(k2 + γ k)) ±

1
2

[
(DN + DP )2(k2 + γ k)2

−4
(
DNDP

(
k4 + 2γ k3 + γ 2k2

)
+

rm sin(kL1) sin(kL2)
k2L1L2

)]1/2 (31)

e can notice some things from Eq. (31). First, it is symmetric
efore exchanging the diffusion coefficients and the interaction
engths of predators and prey, respectively. Second, when γ = 0,
he λ(k) reduces to Eq. (3), therefore the condition L1 ̸= L2 is
t least necessary to guarantee pattern formation, as in [10]. The
ondition of vanishing γ can be obtained if both the shape factor
nd the current velocity are zero, or if v = −Diγ0; this will be
iscussed later.
By introducing the rescaled quantities λ̂ = λ

L21
DN

, K = kL1,
=

√
rmL21/DN , Γ = L1γ , d = DP/DN , ℓ = L2/L1, then the

ispersion relation (31) becomes

= −
(1 + d)

2
(K 2

+ Γ K )

±
1
2

[
(1 − d)2(K 2

+ Γ K )2 − 4µ2 sin(K ) sin(Kℓ)
K 2ℓ

]1/2
, (32)

here prey quantities were chosen arbitrarily for the dimension-
ess variables due to the symmetry as said earlier.

Since we want to study the effects of advection and the influ-
nce of the channel geometry, we leave the case Γ ̸= 0 for later
nd start with Γ = 0. In Fig. 2, plots of Eq. (32) are shown for
= 0 and µ = 15. The latter value was chosen as a typical one

o visualize the behavior of the dispersion relation as a function
f the other parameters. The first plot is for variable d with ℓ = 2

(a), and the other for variable ℓ with d = 1 (b). It can be seen
that when ℓ increases, the length of unstable modes range also,
but when ℓ tends to 1, the size of the range decreases. Indeed,
there is no mode range for values smaller than ℓc ≈ 1.875, so
patterns cannot be formed. On the other hand, for d < 1, the
size of the range of modes increases, while if d increases, the
range of modes decreases until dc ≈ 1.44, where there is only
ne mode that could form patterns. It is worth mentioning that
n [10], numerical evidence was observed that d = 1 must be
ulfilled. Therefore, for the following analysis we choose d = 1
nd ℓ = 2, with Γ ̸= 0. Numerical experiments in this latter case
re far from the scope of this work but will be done elsewhere.
With this choice for the parameters, the dispersion relation

32) simplifies to

(K ) = −K 2
− Γ K + µ

√
−

sin K sin 2K
2K 2 . (33)

We require Re[̂λ(K )] > 0 to find the limit from which spatial
patterns emerge, i.e., the domain regions where the steady-state
is unstable to spatial perturbations. The dispersion relation (33)
5

Fig. 3. Dispersion relation λ̂(K ) for exponential channel, plotted for different
values of µ and Γ . The plane (blue) is the case λ̂ = 0, the yellow surface is
hen Γ = 0. The red and orange surfaces are the cases for positive value of
he parameter Γ = 1, 0.2, respectively; and the green is the negative case for

= −0.2.

iffers from the 1D case [10], only by Γ , so the range of unstable
odes now depends on both Γ and µ. In Fig. 3, the dispersion

elation (33) is shown as a function of Γ and µ, where we can
ee that there will be µ values for which some Γ will prevent
the formation of patterns in this system. Also, note that since Γ
is a scaled quantity, its values also depend on action region length
L1, i.e., by varying this length, patterns can begin to form in the
system.

The range of unstable wavenumbers is determined by the
roots of Eq. (33) when the function λ̂ has two real roots. This
occurs according to the values of the parameters Γ and µ, since
there could be two imaginary roots or a single point. Indeed,
the case of a single point indicates the minimum value of the
parameters for which the patterns start to emerge. The conditions
to find this point and guarantee that it is a maximum are the
following

λ̂(K ) = 0, (34)
∂λ̂(K )
∂K

= 0, (35)

∂2λ̂(K )
∂K 2 < 0. (36)

The first two conditions can be seen geometrically as restrictions
on the function (33), which form a system of equations whose
solutions give the values of the parameters Γ , µ, as a function of
K , and are the following

µ(K ) = −

4K 4 csc(K )
√

−
sin2(K ) cos K

K2

K − 4 sin(2K ) + 3K cos(2K )
, (37)

(K ) = K

(
1

−
1
2K tan K + K cot K − 2

− 1

)
. (38)

hese can be seen as the parametric equations of a curve C in the
arameter space (K , Γ , µ).
On the other hand, we calculate the second derivative (36) to

tudy the threshold value when it is equal to zero, from which it
ecomes negative, which indicates the presence of a maximum.
rom (33), we observe that the second derivative does not contain
he parameter Γ , so it is possible to substitute µ(K ) in it and find
threshold value Km. This leads to the following expression

K 4

√
−

sin2 K cos K
K 2

(
csc K

K − 4 sin(2K ) + 3K cos(2K )
+ ∆

)
= 0.

where

∆ =
4 cot K(

2
(

2
) ) .
sin K 11K + 9K − 8 cos(2K ) − 8 + 10K cos K + 6K cos(3K )
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Fig. 4. Parametric plot of the dispersion relation (33) as a function of the
wavenumber and the parameters µ and Γ . We plot for the values 1 ≤ K ≤ 5,
−200 ≤ µ ≤ 100 and −18 ≤ Γ ≤ 10.

Fig. 5. Curve projection C on a plane as a function of µ and Γ . The shaded
region indicates the patterns formation area (below the curve).

The real part of this equation has several real roots and also
has some divergences. We show the first three roots (red dots) in
Fig. 4. We see that each one corresponds to a different branch of
the parametric curve. The root K1 = 4.7123 corresponds to the
values Γ1 = −4.712 and µ1 = −6.01954, while K2 = 2.52715
has Γ2 = −3.0655 and µ2 = −6.6032.

A common feature of these points is that they have negative
Γ and µ values. The parameter Γ can have negative values,
indicating a competition between the two advection sources: the
velocity v and the shape factor γ0. However, according to the
definition of µ through scaling, we note that it is a positive
parameter, so we can choose as the critical value µc = 0,
which precisely corresponds to the root Kc = 1.570796, Γc =

−1.570796, corresponding to the red dot in left branch shown in
Fig. 4. If we return to the initial units, we have

kc ≈
1.570796

L1
, γc ≈

−1.570796
L1

.

o obtain a numerical relation between µ and Γ , we can project
he curve C on a plane regardless of its dependence on K . In Fig. 5,
e show the relation between µ and Γ . In this case, the area
nder the curve represents the pattern formation area, while no
attern can be formed above it. We see that the intersection of
he curve with Γ0 = 0 is precisely the critical point obtained
in [10], corresponding to µ0 = 12.523205 with K0 = 1.827590.
This point is shown in Fig. 4 as a black dot, and labeled in Fig. 5.
The dispersion relation and the range of unstable modes where
pattern formation occurs change as a function of the channel’s
geometric parameters, and the advective term.

In Fig. 6, we present the dispersion relation for different values
of Γ = −1, 0, 1. According to Fig. 6d, the range of unstable
wavenumbers Kr = Kmax − Kmin differs for width function, for
Γ = −1, Kr = 0.326, when Γ = 1 we obtain Kr = 1.99 and
finally with Γ = 0 we obtain Kr = 0.277. The small effect cannot
be neglected since the canal confinement reduces the possibility
of pattern formation.
6

Fig. 6. Dispersion relation λ̂(K ) for prey–predator model with advection velocity
v, in an exponential funnel-like channel with a generalized width function given
by w(x) = A0e−γ0x for different values of the parameter Γ .

According to Eq. (33), the tuning of the parameter L1 allows
modulations of arbitrary wavelengths. When Γ = 0 for low DN
values and low population density disordered spikes can appear,
probably generated by the asymmetry between birth and death
processes [32], (birth events only occur adjacent to a living or-
ganism, whereas deaths occur anywhere), i.e., under reproductive
fluctuations and in the presence of a weak diffusion, individuals
can organize into clusters [10].

For the case Γ ̸= 0, it is essential to consider that Γ is an
ffective advection term. In general, its value will come from the
alance of the two contributions, geometric and advective. Let us
onsider the extreme cases to see the effects separately. When
0 = 0 and v ̸= 0, it is the case of advective flow in a straight
hannel. The increase in Γ is due to a higher advection velocity.
The negative values of Γ occur if the direction of the velocity is
opposite to that of the diffusive flow, giving the additional area
for pattern formation, as seen in Fig. 5. Clearly, Γ = 0 is when
there is no advection. On the other hand, if γ0 ̸= 0 and v = 0, it is
the case where the geometry of the channel induces the advective
term.

For the appearance of the patterns in a channel with an ex-
ponential profile, positive values of Γ are due to the funnel-like
channel shape, that is, from wide to narrow, while negative values
of Γ come from the growth of the region from narrow to wide,
as seen in Fig. 1, which contribute an additional area under the
dispersion curve. In the latter case, the influence of geometry on
the variation of the range of unstable modes that favors pattern
formation is evident. Although it is the full advective term Γ

which couples with the interaction rates and lengths, as analyzed
previously.

4. Conclusions

The introduction of a finite-range interaction in a spatial
Lotka–Volterra model allows the description of spatio-temporal
dynamics characterized by regular spatial structures. We study
a reaction–diffusion in an ecological system where for the re-
action term, the predation strongly depends on the probability
of encounter, which must take into account predators shifts in
response to prey movements that means the strength of the
interaction in the nonlinear term is a function of individual’s
proximity.
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In particular, we analytically study the relationship between
the interaction distance of the species and the geometric char-
acteristics of the domain where they diffuse in the presence
of an external advection current. We consider that the two-
dimensional region where the reaction–diffusion process occurs
is channel-shaped, i.e., when the longitudinal coordinate is much
longer than the transversal one, which is reflected in a rapid
equilibration in the transverse direction. Therefore, it is possi-
ble to use the one-dimensional projection method, where the
equation projected along the longitudinal coordinate contains the
geometric information in the channel width function and where
a coordinate-dependent diffusivity may appear. The analysis was
made on a long channel in the regime in which the transverse
modes equilibrate much faster than the longitudinal ones, and
therefore it is possible to use the Fick–Jacobs–Zwanzig operator
with external force for confined diffusion.

We first made the stability analysis to study the influence of
the domain’s geometric characteristics in pattern formation de-
pending on the unstable modes range given by the dispersion re-
lation. Then we propose to calculate the Fourier transform of the
reaction–diffusion–advection system where the Fick–Jacobs oper-
ator with external potential was expanded for constant diffusion
coefficients.

We analyzed the instability conditions on an exponential pro-
file channel through the effective one-dimensional projection
method with different values for the shape parameter. We choose
this exponential profile channel because the convolution integral
gives an exact analytical expression. As a general result, we
found that Γ increases the dimension of the parameter space and
therefore modifies the unstable modes range. Negative values of
Γ correspond to an increase of the region’s area, where channels
boundaries go from narrow to wide. This is also enhanced if the
velocity v goes opposite to the effective flow produced by channel
geometry. In this case, the appearance of patterns is favored even
though the spatial solution is marked by clustering (lower L1).
Conversely, when Γ increases, the critical value increases along
the curve C in the parameter space (K , Γ , µ) as we can see in
Fig. 5. This increase may be due either to the fact that boundaries
decrease from wide to narrow or because the advection velocity
goes in the same direction as the geometric flow.

Generalizations to different channel shapes will be possible
through numerical implementation. However, in this work, we
analytically obtain that the geometric properties of the bound-
aries induce an effective advective term that couples with the
interaction terms of the species. These results could also be
extended to a three-dimensional channel with an external flow
to model the dynamics of the species living in a river [29]. Then
the projection method would tell us how the flow induced by
geometry competes with the external flow in some specific places
and how this affects species’ behavior in their habitat. Finally, we
point out that Brownian dynamics simulations must be carried
out to verify the corresponding validity regimes. This will be done
elsewhere.
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